You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
465 lines
10 KiB
465 lines
10 KiB
( function () {
|
|
|
|
/**
|
|
* Simplification Geometry Modifier
|
|
* - based on code and technique
|
|
* - by Stan Melax in 1998
|
|
* - Progressive Mesh type Polygon Reduction Algorithm
|
|
* - http://www.melax.com/polychop/
|
|
*/
|
|
|
|
const _cb = new THREE.Vector3(),
|
|
_ab = new THREE.Vector3();
|
|
class SimplifyModifier {
|
|
|
|
modify( geometry, count ) {
|
|
|
|
geometry = geometry.clone();
|
|
const attributes = geometry.attributes;
|
|
|
|
// this modifier can only process indexed and non-indexed geomtries with a position attribute
|
|
|
|
for ( const name in attributes ) {
|
|
|
|
if ( name !== 'position' ) geometry.deleteAttribute( name );
|
|
|
|
}
|
|
|
|
geometry = THREE.BufferGeometryUtils.mergeVertices( geometry );
|
|
|
|
//
|
|
// put data of original geometry in different data structures
|
|
//
|
|
|
|
const vertices = [];
|
|
const faces = [];
|
|
|
|
// add vertices
|
|
|
|
const positionAttribute = geometry.getAttribute( 'position' );
|
|
for ( let i = 0; i < positionAttribute.count; i ++ ) {
|
|
|
|
const v = new THREE.Vector3().fromBufferAttribute( positionAttribute, i );
|
|
const vertex = new Vertex( v );
|
|
vertices.push( vertex );
|
|
|
|
}
|
|
|
|
// add faces
|
|
|
|
let index = geometry.getIndex();
|
|
if ( index !== null ) {
|
|
|
|
for ( let i = 0; i < index.count; i += 3 ) {
|
|
|
|
const a = index.getX( i );
|
|
const b = index.getX( i + 1 );
|
|
const c = index.getX( i + 2 );
|
|
const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );
|
|
faces.push( triangle );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for ( let i = 0; i < positionAttribute.count; i += 3 ) {
|
|
|
|
const a = i;
|
|
const b = i + 1;
|
|
const c = i + 2;
|
|
const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );
|
|
faces.push( triangle );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// compute all edge collapse costs
|
|
|
|
for ( let i = 0, il = vertices.length; i < il; i ++ ) {
|
|
|
|
computeEdgeCostAtVertex( vertices[ i ] );
|
|
|
|
}
|
|
|
|
let nextVertex;
|
|
let z = count;
|
|
while ( z -- ) {
|
|
|
|
nextVertex = minimumCostEdge( vertices );
|
|
if ( ! nextVertex ) {
|
|
|
|
console.log( 'THREE.SimplifyModifier: No next vertex' );
|
|
break;
|
|
|
|
}
|
|
|
|
collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor );
|
|
|
|
}
|
|
|
|
//
|
|
|
|
const simplifiedGeometry = new THREE.BufferGeometry();
|
|
const position = [];
|
|
index = [];
|
|
|
|
//
|
|
|
|
for ( let i = 0; i < vertices.length; i ++ ) {
|
|
|
|
const vertex = vertices[ i ].position;
|
|
position.push( vertex.x, vertex.y, vertex.z );
|
|
// cache final index to GREATLY speed up faces reconstruction
|
|
vertices[ i ].id = i;
|
|
|
|
}
|
|
|
|
//
|
|
|
|
for ( let i = 0; i < faces.length; i ++ ) {
|
|
|
|
const face = faces[ i ];
|
|
index.push( face.v1.id, face.v2.id, face.v3.id );
|
|
|
|
}
|
|
|
|
//
|
|
|
|
simplifiedGeometry.setAttribute( 'position', new THREE.Float32BufferAttribute( position, 3 ) );
|
|
simplifiedGeometry.setIndex( index );
|
|
return simplifiedGeometry;
|
|
|
|
}
|
|
|
|
}
|
|
function pushIfUnique( array, object ) {
|
|
|
|
if ( array.indexOf( object ) === - 1 ) array.push( object );
|
|
|
|
}
|
|
|
|
function removeFromArray( array, object ) {
|
|
|
|
const k = array.indexOf( object );
|
|
if ( k > - 1 ) array.splice( k, 1 );
|
|
|
|
}
|
|
|
|
function computeEdgeCollapseCost( u, v ) {
|
|
|
|
// if we collapse edge uv by moving u to v then how
|
|
// much different will the model change, i.e. the "error".
|
|
|
|
const edgelength = v.position.distanceTo( u.position );
|
|
let curvature = 0;
|
|
const sideFaces = [];
|
|
|
|
// find the "sides" triangles that are on the edge uv
|
|
for ( let i = 0, il = u.faces.length; i < il; i ++ ) {
|
|
|
|
const face = u.faces[ i ];
|
|
if ( face.hasVertex( v ) ) {
|
|
|
|
sideFaces.push( face );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// use the triangle facing most away from the sides
|
|
// to determine our curvature term
|
|
for ( let i = 0, il = u.faces.length; i < il; i ++ ) {
|
|
|
|
let minCurvature = 1;
|
|
const face = u.faces[ i ];
|
|
for ( let j = 0; j < sideFaces.length; j ++ ) {
|
|
|
|
const sideFace = sideFaces[ j ];
|
|
// use dot product of face normals.
|
|
const dotProd = face.normal.dot( sideFace.normal );
|
|
minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2 );
|
|
|
|
}
|
|
|
|
curvature = Math.max( curvature, minCurvature );
|
|
|
|
}
|
|
|
|
// crude approach in attempt to preserve borders
|
|
// though it seems not to be totally correct
|
|
const borders = 0;
|
|
if ( sideFaces.length < 2 ) {
|
|
|
|
// we add some arbitrary cost for borders,
|
|
// borders += 10;
|
|
curvature = 1;
|
|
|
|
}
|
|
|
|
const amt = edgelength * curvature + borders;
|
|
return amt;
|
|
|
|
}
|
|
|
|
function computeEdgeCostAtVertex( v ) {
|
|
|
|
// compute the edge collapse cost for all edges that start
|
|
// from vertex v. Since we are only interested in reducing
|
|
// the object by selecting the min cost edge at each step, we
|
|
// only cache the cost of the least cost edge at this vertex
|
|
// (in member variable collapse) as well as the value of the
|
|
// cost (in member variable collapseCost).
|
|
|
|
if ( v.neighbors.length === 0 ) {
|
|
|
|
// collapse if no neighbors.
|
|
v.collapseNeighbor = null;
|
|
v.collapseCost = - 0.01;
|
|
return;
|
|
|
|
}
|
|
|
|
v.collapseCost = 100000;
|
|
v.collapseNeighbor = null;
|
|
|
|
// search all neighboring edges for "least cost" edge
|
|
for ( let i = 0; i < v.neighbors.length; i ++ ) {
|
|
|
|
const collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] );
|
|
if ( ! v.collapseNeighbor ) {
|
|
|
|
v.collapseNeighbor = v.neighbors[ i ];
|
|
v.collapseCost = collapseCost;
|
|
v.minCost = collapseCost;
|
|
v.totalCost = 0;
|
|
v.costCount = 0;
|
|
|
|
}
|
|
|
|
v.costCount ++;
|
|
v.totalCost += collapseCost;
|
|
if ( collapseCost < v.minCost ) {
|
|
|
|
v.collapseNeighbor = v.neighbors[ i ];
|
|
v.minCost = collapseCost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// we average the cost of collapsing at this vertex
|
|
v.collapseCost = v.totalCost / v.costCount;
|
|
// v.collapseCost = v.minCost;
|
|
|
|
}
|
|
|
|
function removeVertex( v, vertices ) {
|
|
|
|
console.assert( v.faces.length === 0 );
|
|
while ( v.neighbors.length ) {
|
|
|
|
const n = v.neighbors.pop();
|
|
removeFromArray( n.neighbors, v );
|
|
|
|
}
|
|
|
|
removeFromArray( vertices, v );
|
|
|
|
}
|
|
|
|
function removeFace( f, faces ) {
|
|
|
|
removeFromArray( faces, f );
|
|
if ( f.v1 ) removeFromArray( f.v1.faces, f );
|
|
if ( f.v2 ) removeFromArray( f.v2.faces, f );
|
|
if ( f.v3 ) removeFromArray( f.v3.faces, f );
|
|
|
|
// TODO optimize this!
|
|
const vs = [ f.v1, f.v2, f.v3 ];
|
|
for ( let i = 0; i < 3; i ++ ) {
|
|
|
|
const v1 = vs[ i ];
|
|
const v2 = vs[ ( i + 1 ) % 3 ];
|
|
if ( ! v1 || ! v2 ) continue;
|
|
v1.removeIfNonNeighbor( v2 );
|
|
v2.removeIfNonNeighbor( v1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function collapse( vertices, faces, u, v ) {
|
|
|
|
// u and v are pointers to vertices of an edge
|
|
|
|
// Collapse the edge uv by moving vertex u onto v
|
|
|
|
if ( ! v ) {
|
|
|
|
// u is a vertex all by itself so just delete it..
|
|
removeVertex( u, vertices );
|
|
return;
|
|
|
|
}
|
|
|
|
const tmpVertices = [];
|
|
for ( let i = 0; i < u.neighbors.length; i ++ ) {
|
|
|
|
tmpVertices.push( u.neighbors[ i ] );
|
|
|
|
}
|
|
|
|
// delete triangles on edge uv:
|
|
for ( let i = u.faces.length - 1; i >= 0; i -- ) {
|
|
|
|
if ( u.faces[ i ] && u.faces[ i ].hasVertex( v ) ) {
|
|
|
|
removeFace( u.faces[ i ], faces );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// update remaining triangles to have v instead of u
|
|
for ( let i = u.faces.length - 1; i >= 0; i -- ) {
|
|
|
|
u.faces[ i ].replaceVertex( u, v );
|
|
|
|
}
|
|
|
|
removeVertex( u, vertices );
|
|
|
|
// recompute the edge collapse costs in neighborhood
|
|
for ( let i = 0; i < tmpVertices.length; i ++ ) {
|
|
|
|
computeEdgeCostAtVertex( tmpVertices[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function minimumCostEdge( vertices ) {
|
|
|
|
// O(n * n) approach. TODO optimize this
|
|
|
|
let least = vertices[ 0 ];
|
|
for ( let i = 0; i < vertices.length; i ++ ) {
|
|
|
|
if ( vertices[ i ].collapseCost < least.collapseCost ) {
|
|
|
|
least = vertices[ i ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return least;
|
|
|
|
}
|
|
|
|
// we use a triangle class to represent structure of face slightly differently
|
|
|
|
class Triangle {
|
|
|
|
constructor( v1, v2, v3, a, b, c ) {
|
|
|
|
this.a = a;
|
|
this.b = b;
|
|
this.c = c;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
this.v3 = v3;
|
|
this.normal = new THREE.Vector3();
|
|
this.computeNormal();
|
|
v1.faces.push( this );
|
|
v1.addUniqueNeighbor( v2 );
|
|
v1.addUniqueNeighbor( v3 );
|
|
v2.faces.push( this );
|
|
v2.addUniqueNeighbor( v1 );
|
|
v2.addUniqueNeighbor( v3 );
|
|
v3.faces.push( this );
|
|
v3.addUniqueNeighbor( v1 );
|
|
v3.addUniqueNeighbor( v2 );
|
|
|
|
}
|
|
computeNormal() {
|
|
|
|
const vA = this.v1.position;
|
|
const vB = this.v2.position;
|
|
const vC = this.v3.position;
|
|
_cb.subVectors( vC, vB );
|
|
_ab.subVectors( vA, vB );
|
|
_cb.cross( _ab ).normalize();
|
|
this.normal.copy( _cb );
|
|
|
|
}
|
|
hasVertex( v ) {
|
|
|
|
return v === this.v1 || v === this.v2 || v === this.v3;
|
|
|
|
}
|
|
replaceVertex( oldv, newv ) {
|
|
|
|
if ( oldv === this.v1 ) this.v1 = newv; else if ( oldv === this.v2 ) this.v2 = newv; else if ( oldv === this.v3 ) this.v3 = newv;
|
|
removeFromArray( oldv.faces, this );
|
|
newv.faces.push( this );
|
|
oldv.removeIfNonNeighbor( this.v1 );
|
|
this.v1.removeIfNonNeighbor( oldv );
|
|
oldv.removeIfNonNeighbor( this.v2 );
|
|
this.v2.removeIfNonNeighbor( oldv );
|
|
oldv.removeIfNonNeighbor( this.v3 );
|
|
this.v3.removeIfNonNeighbor( oldv );
|
|
this.v1.addUniqueNeighbor( this.v2 );
|
|
this.v1.addUniqueNeighbor( this.v3 );
|
|
this.v2.addUniqueNeighbor( this.v1 );
|
|
this.v2.addUniqueNeighbor( this.v3 );
|
|
this.v3.addUniqueNeighbor( this.v1 );
|
|
this.v3.addUniqueNeighbor( this.v2 );
|
|
this.computeNormal();
|
|
|
|
}
|
|
|
|
}
|
|
class Vertex {
|
|
|
|
constructor( v ) {
|
|
|
|
this.position = v;
|
|
this.id = - 1; // external use position in vertices list (for e.g. face generation)
|
|
|
|
this.faces = []; // faces vertex is connected
|
|
this.neighbors = []; // neighbouring vertices aka "adjacentVertices"
|
|
|
|
// these will be computed in computeEdgeCostAtVertex()
|
|
this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist
|
|
this.collapseNeighbor = null; // best candinate for collapsing
|
|
|
|
}
|
|
|
|
addUniqueNeighbor( vertex ) {
|
|
|
|
pushIfUnique( this.neighbors, vertex );
|
|
|
|
}
|
|
removeIfNonNeighbor( n ) {
|
|
|
|
const neighbors = this.neighbors;
|
|
const faces = this.faces;
|
|
const offset = neighbors.indexOf( n );
|
|
if ( offset === - 1 ) return;
|
|
for ( let i = 0; i < faces.length; i ++ ) {
|
|
|
|
if ( faces[ i ].hasVertex( n ) ) return;
|
|
|
|
}
|
|
|
|
neighbors.splice( offset, 1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
THREE.SimplifyModifier = SimplifyModifier;
|
|
|
|
} )();
|
|
|