You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2039 lines
55 KiB
2039 lines
55 KiB
( function () {
|
|
|
|
/**
|
|
* OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
|
|
* Supports reading as UnsignedByte, HalfFloat and Float type data texture.
|
|
*
|
|
* Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
|
|
* implementation, so I have preserved their copyright notices.
|
|
*/
|
|
|
|
// /*
|
|
// Copyright (c) 2014 - 2017, Syoyo Fujita
|
|
// All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the Syoyo Fujita nor the
|
|
// names of its contributors may be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// */
|
|
|
|
// // TinyEXR contains some OpenEXR code, which is licensed under ------------
|
|
|
|
// ///////////////////////////////////////////////////////////////////////////
|
|
// //
|
|
// // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
// // Digital Ltd. LLC
|
|
// //
|
|
// // All rights reserved.
|
|
// //
|
|
// // Redistribution and use in source and binary forms, with or without
|
|
// // modification, are permitted provided that the following conditions are
|
|
// // met:
|
|
// // * Redistributions of source code must retain the above copyright
|
|
// // notice, this list of conditions and the following disclaimer.
|
|
// // * Redistributions in binary form must reproduce the above
|
|
// // copyright notice, this list of conditions and the following disclaimer
|
|
// // in the documentation and/or other materials provided with the
|
|
// // distribution.
|
|
// // * Neither the name of Industrial Light & Magic nor the names of
|
|
// // its contributors may be used to endorse or promote products derived
|
|
// // from this software without specific prior written permission.
|
|
// //
|
|
// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// //
|
|
// ///////////////////////////////////////////////////////////////////////////
|
|
|
|
// // End of OpenEXR license -------------------------------------------------
|
|
|
|
class EXRLoader extends THREE.DataTextureLoader {
|
|
|
|
constructor( manager ) {
|
|
|
|
super( manager );
|
|
this.type = THREE.HalfFloatType;
|
|
|
|
}
|
|
parse( buffer ) {
|
|
|
|
const USHORT_RANGE = 1 << 16;
|
|
const BITMAP_SIZE = USHORT_RANGE >> 3;
|
|
const HUF_ENCBITS = 16; // literal (value) bit length
|
|
const HUF_DECBITS = 14; // decoding bit size (>= 8)
|
|
|
|
const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
|
|
const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
|
|
const HUF_DECMASK = HUF_DECSIZE - 1;
|
|
const NBITS = 16;
|
|
const A_OFFSET = 1 << NBITS - 1;
|
|
const MOD_MASK = ( 1 << NBITS ) - 1;
|
|
const SHORT_ZEROCODE_RUN = 59;
|
|
const LONG_ZEROCODE_RUN = 63;
|
|
const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
|
|
const ULONG_SIZE = 8;
|
|
const FLOAT32_SIZE = 4;
|
|
const INT32_SIZE = 4;
|
|
const INT16_SIZE = 2;
|
|
const INT8_SIZE = 1;
|
|
const STATIC_HUFFMAN = 0;
|
|
const DEFLATE = 1;
|
|
const UNKNOWN = 0;
|
|
const LOSSY_DCT = 1;
|
|
const RLE = 2;
|
|
const logBase = Math.pow( 2.7182818, 2.2 );
|
|
function reverseLutFromBitmap( bitmap, lut ) {
|
|
|
|
let k = 0;
|
|
for ( let i = 0; i < USHORT_RANGE; ++ i ) {
|
|
|
|
if ( i == 0 || bitmap[ i >> 3 ] & 1 << ( i & 7 ) ) {
|
|
|
|
lut[ k ++ ] = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const n = k - 1;
|
|
while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
|
|
return n;
|
|
|
|
}
|
|
|
|
function hufClearDecTable( hdec ) {
|
|
|
|
for ( let i = 0; i < HUF_DECSIZE; i ++ ) {
|
|
|
|
hdec[ i ] = {};
|
|
hdec[ i ].len = 0;
|
|
hdec[ i ].lit = 0;
|
|
hdec[ i ].p = null;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const getBitsReturn = {
|
|
l: 0,
|
|
c: 0,
|
|
lc: 0
|
|
};
|
|
function getBits( nBits, c, lc, uInt8Array, inOffset ) {
|
|
|
|
while ( lc < nBits ) {
|
|
|
|
c = c << 8 | parseUint8Array( uInt8Array, inOffset );
|
|
lc += 8;
|
|
|
|
}
|
|
|
|
lc -= nBits;
|
|
getBitsReturn.l = c >> lc & ( 1 << nBits ) - 1;
|
|
getBitsReturn.c = c;
|
|
getBitsReturn.lc = lc;
|
|
|
|
}
|
|
|
|
const hufTableBuffer = new Array( 59 );
|
|
function hufCanonicalCodeTable( hcode ) {
|
|
|
|
for ( let i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
|
|
for ( let i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
|
|
let c = 0;
|
|
for ( let i = 58; i > 0; -- i ) {
|
|
|
|
const nc = c + hufTableBuffer[ i ] >> 1;
|
|
hufTableBuffer[ i ] = c;
|
|
c = nc;
|
|
|
|
}
|
|
|
|
for ( let i = 0; i < HUF_ENCSIZE; ++ i ) {
|
|
|
|
const l = hcode[ i ];
|
|
if ( l > 0 ) hcode[ i ] = l | hufTableBuffer[ l ] ++ << 6;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, hcode ) {
|
|
|
|
const p = inOffset;
|
|
let c = 0;
|
|
let lc = 0;
|
|
for ( ; im <= iM; im ++ ) {
|
|
|
|
if ( p.value - inOffset.value > ni ) return false;
|
|
getBits( 6, c, lc, uInt8Array, p );
|
|
const l = getBitsReturn.l;
|
|
c = getBitsReturn.c;
|
|
lc = getBitsReturn.lc;
|
|
hcode[ im ] = l;
|
|
if ( l == LONG_ZEROCODE_RUN ) {
|
|
|
|
if ( p.value - inOffset.value > ni ) {
|
|
|
|
throw new Error( 'Something wrong with hufUnpackEncTable' );
|
|
|
|
}
|
|
|
|
getBits( 8, c, lc, uInt8Array, p );
|
|
let zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
|
|
c = getBitsReturn.c;
|
|
lc = getBitsReturn.lc;
|
|
if ( im + zerun > iM + 1 ) {
|
|
|
|
throw new Error( 'Something wrong with hufUnpackEncTable' );
|
|
|
|
}
|
|
|
|
while ( zerun -- ) hcode[ im ++ ] = 0;
|
|
im --;
|
|
|
|
} else if ( l >= SHORT_ZEROCODE_RUN ) {
|
|
|
|
let zerun = l - SHORT_ZEROCODE_RUN + 2;
|
|
if ( im + zerun > iM + 1 ) {
|
|
|
|
throw new Error( 'Something wrong with hufUnpackEncTable' );
|
|
|
|
}
|
|
|
|
while ( zerun -- ) hcode[ im ++ ] = 0;
|
|
im --;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
hufCanonicalCodeTable( hcode );
|
|
|
|
}
|
|
|
|
function hufLength( code ) {
|
|
|
|
return code & 63;
|
|
|
|
}
|
|
|
|
function hufCode( code ) {
|
|
|
|
return code >> 6;
|
|
|
|
}
|
|
|
|
function hufBuildDecTable( hcode, im, iM, hdecod ) {
|
|
|
|
for ( ; im <= iM; im ++ ) {
|
|
|
|
const c = hufCode( hcode[ im ] );
|
|
const l = hufLength( hcode[ im ] );
|
|
if ( c >> l ) {
|
|
|
|
throw new Error( 'Invalid table entry' );
|
|
|
|
}
|
|
|
|
if ( l > HUF_DECBITS ) {
|
|
|
|
const pl = hdecod[ c >> l - HUF_DECBITS ];
|
|
if ( pl.len ) {
|
|
|
|
throw new Error( 'Invalid table entry' );
|
|
|
|
}
|
|
|
|
pl.lit ++;
|
|
if ( pl.p ) {
|
|
|
|
const p = pl.p;
|
|
pl.p = new Array( pl.lit );
|
|
for ( let i = 0; i < pl.lit - 1; ++ i ) {
|
|
|
|
pl.p[ i ] = p[ i ];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pl.p = new Array( 1 );
|
|
|
|
}
|
|
|
|
pl.p[ pl.lit - 1 ] = im;
|
|
|
|
} else if ( l ) {
|
|
|
|
let plOffset = 0;
|
|
for ( let i = 1 << HUF_DECBITS - l; i > 0; i -- ) {
|
|
|
|
const pl = hdecod[ ( c << HUF_DECBITS - l ) + plOffset ];
|
|
if ( pl.len || pl.p ) {
|
|
|
|
throw new Error( 'Invalid table entry' );
|
|
|
|
}
|
|
|
|
pl.len = l;
|
|
pl.lit = im;
|
|
plOffset ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
const getCharReturn = {
|
|
c: 0,
|
|
lc: 0
|
|
};
|
|
function getChar( c, lc, uInt8Array, inOffset ) {
|
|
|
|
c = c << 8 | parseUint8Array( uInt8Array, inOffset );
|
|
lc += 8;
|
|
getCharReturn.c = c;
|
|
getCharReturn.lc = lc;
|
|
|
|
}
|
|
|
|
const getCodeReturn = {
|
|
c: 0,
|
|
lc: 0
|
|
};
|
|
function getCode( po, rlc, c, lc, uInt8Array, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
|
|
|
|
if ( po == rlc ) {
|
|
|
|
if ( lc < 8 ) {
|
|
|
|
getChar( c, lc, uInt8Array, inOffset );
|
|
c = getCharReturn.c;
|
|
lc = getCharReturn.lc;
|
|
|
|
}
|
|
|
|
lc -= 8;
|
|
let cs = c >> lc;
|
|
cs = new Uint8Array( [ cs ] )[ 0 ];
|
|
if ( outBufferOffset.value + cs > outBufferEndOffset ) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
const s = outBuffer[ outBufferOffset.value - 1 ];
|
|
while ( cs -- > 0 ) {
|
|
|
|
outBuffer[ outBufferOffset.value ++ ] = s;
|
|
|
|
}
|
|
|
|
} else if ( outBufferOffset.value < outBufferEndOffset ) {
|
|
|
|
outBuffer[ outBufferOffset.value ++ ] = po;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
getCodeReturn.c = c;
|
|
getCodeReturn.lc = lc;
|
|
|
|
}
|
|
|
|
function UInt16( value ) {
|
|
|
|
return value & 0xFFFF;
|
|
|
|
}
|
|
|
|
function Int16( value ) {
|
|
|
|
const ref = UInt16( value );
|
|
return ref > 0x7FFF ? ref - 0x10000 : ref;
|
|
|
|
}
|
|
|
|
const wdec14Return = {
|
|
a: 0,
|
|
b: 0
|
|
};
|
|
function wdec14( l, h ) {
|
|
|
|
const ls = Int16( l );
|
|
const hs = Int16( h );
|
|
const hi = hs;
|
|
const ai = ls + ( hi & 1 ) + ( hi >> 1 );
|
|
const as = ai;
|
|
const bs = ai - hi;
|
|
wdec14Return.a = as;
|
|
wdec14Return.b = bs;
|
|
|
|
}
|
|
|
|
function wdec16( l, h ) {
|
|
|
|
const m = UInt16( l );
|
|
const d = UInt16( h );
|
|
const bb = m - ( d >> 1 ) & MOD_MASK;
|
|
const aa = d + bb - A_OFFSET & MOD_MASK;
|
|
wdec14Return.a = aa;
|
|
wdec14Return.b = bb;
|
|
|
|
}
|
|
|
|
function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
|
|
|
|
const w14 = mx < 1 << 14;
|
|
const n = nx > ny ? ny : nx;
|
|
let p = 1;
|
|
let p2;
|
|
let py;
|
|
while ( p <= n ) p <<= 1;
|
|
p >>= 1;
|
|
p2 = p;
|
|
p >>= 1;
|
|
while ( p >= 1 ) {
|
|
|
|
py = 0;
|
|
const ey = py + oy * ( ny - p2 );
|
|
const oy1 = oy * p;
|
|
const oy2 = oy * p2;
|
|
const ox1 = ox * p;
|
|
const ox2 = ox * p2;
|
|
let i00, i01, i10, i11;
|
|
for ( ; py <= ey; py += oy2 ) {
|
|
|
|
let px = py;
|
|
const ex = py + ox * ( nx - p2 );
|
|
for ( ; px <= ex; px += ox2 ) {
|
|
|
|
const p01 = px + ox1;
|
|
const p10 = px + oy1;
|
|
const p11 = p10 + ox1;
|
|
if ( w14 ) {
|
|
|
|
wdec14( buffer[ px + j ], buffer[ p10 + j ] );
|
|
i00 = wdec14Return.a;
|
|
i10 = wdec14Return.b;
|
|
wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
|
|
i01 = wdec14Return.a;
|
|
i11 = wdec14Return.b;
|
|
wdec14( i00, i01 );
|
|
buffer[ px + j ] = wdec14Return.a;
|
|
buffer[ p01 + j ] = wdec14Return.b;
|
|
wdec14( i10, i11 );
|
|
buffer[ p10 + j ] = wdec14Return.a;
|
|
buffer[ p11 + j ] = wdec14Return.b;
|
|
|
|
} else {
|
|
|
|
wdec16( buffer[ px + j ], buffer[ p10 + j ] );
|
|
i00 = wdec14Return.a;
|
|
i10 = wdec14Return.b;
|
|
wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
|
|
i01 = wdec14Return.a;
|
|
i11 = wdec14Return.b;
|
|
wdec16( i00, i01 );
|
|
buffer[ px + j ] = wdec14Return.a;
|
|
buffer[ p01 + j ] = wdec14Return.b;
|
|
wdec16( i10, i11 );
|
|
buffer[ p10 + j ] = wdec14Return.a;
|
|
buffer[ p11 + j ] = wdec14Return.b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( nx & p ) {
|
|
|
|
const p10 = px + oy1;
|
|
if ( w14 ) wdec14( buffer[ px + j ], buffer[ p10 + j ] ); else wdec16( buffer[ px + j ], buffer[ p10 + j ] );
|
|
i00 = wdec14Return.a;
|
|
buffer[ p10 + j ] = wdec14Return.b;
|
|
buffer[ px + j ] = i00;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ny & p ) {
|
|
|
|
let px = py;
|
|
const ex = py + ox * ( nx - p2 );
|
|
for ( ; px <= ex; px += ox2 ) {
|
|
|
|
const p01 = px + ox1;
|
|
if ( w14 ) wdec14( buffer[ px + j ], buffer[ p01 + j ] ); else wdec16( buffer[ px + j ], buffer[ p01 + j ] );
|
|
i00 = wdec14Return.a;
|
|
buffer[ p01 + j ] = wdec14Return.b;
|
|
buffer[ px + j ] = i00;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p2 = p;
|
|
p >>= 1;
|
|
|
|
}
|
|
|
|
return py;
|
|
|
|
}
|
|
|
|
function hufDecode( encodingTable, decodingTable, uInt8Array, inOffset, ni, rlc, no, outBuffer, outOffset ) {
|
|
|
|
let c = 0;
|
|
let lc = 0;
|
|
const outBufferEndOffset = no;
|
|
const inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
|
|
while ( inOffset.value < inOffsetEnd ) {
|
|
|
|
getChar( c, lc, uInt8Array, inOffset );
|
|
c = getCharReturn.c;
|
|
lc = getCharReturn.lc;
|
|
while ( lc >= HUF_DECBITS ) {
|
|
|
|
const index = c >> lc - HUF_DECBITS & HUF_DECMASK;
|
|
const pl = decodingTable[ index ];
|
|
if ( pl.len ) {
|
|
|
|
lc -= pl.len;
|
|
getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
|
|
c = getCodeReturn.c;
|
|
lc = getCodeReturn.lc;
|
|
|
|
} else {
|
|
|
|
if ( ! pl.p ) {
|
|
|
|
throw new Error( 'hufDecode issues' );
|
|
|
|
}
|
|
|
|
let j;
|
|
for ( j = 0; j < pl.lit; j ++ ) {
|
|
|
|
const l = hufLength( encodingTable[ pl.p[ j ] ] );
|
|
while ( lc < l && inOffset.value < inOffsetEnd ) {
|
|
|
|
getChar( c, lc, uInt8Array, inOffset );
|
|
c = getCharReturn.c;
|
|
lc = getCharReturn.lc;
|
|
|
|
}
|
|
|
|
if ( lc >= l ) {
|
|
|
|
if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( c >> lc - l & ( 1 << l ) - 1 ) ) {
|
|
|
|
lc -= l;
|
|
getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
|
|
c = getCodeReturn.c;
|
|
lc = getCodeReturn.lc;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( j == pl.lit ) {
|
|
|
|
throw new Error( 'hufDecode issues' );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const i = 8 - ni & 7;
|
|
c >>= i;
|
|
lc -= i;
|
|
while ( lc > 0 ) {
|
|
|
|
const pl = decodingTable[ c << HUF_DECBITS - lc & HUF_DECMASK ];
|
|
if ( pl.len ) {
|
|
|
|
lc -= pl.len;
|
|
getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset );
|
|
c = getCodeReturn.c;
|
|
lc = getCodeReturn.lc;
|
|
|
|
} else {
|
|
|
|
throw new Error( 'hufDecode issues' );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
|
|
|
|
const outOffset = {
|
|
value: 0
|
|
};
|
|
const initialInOffset = inOffset.value;
|
|
const im = parseUint32( inDataView, inOffset );
|
|
const iM = parseUint32( inDataView, inOffset );
|
|
inOffset.value += 4;
|
|
const nBits = parseUint32( inDataView, inOffset );
|
|
inOffset.value += 4;
|
|
if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
|
|
|
|
throw new Error( 'Something wrong with HUF_ENCSIZE' );
|
|
|
|
}
|
|
|
|
const freq = new Array( HUF_ENCSIZE );
|
|
const hdec = new Array( HUF_DECSIZE );
|
|
hufClearDecTable( hdec );
|
|
const ni = nCompressed - ( inOffset.value - initialInOffset );
|
|
hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, freq );
|
|
if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
|
|
|
|
throw new Error( 'Something wrong with hufUncompress' );
|
|
|
|
}
|
|
|
|
hufBuildDecTable( freq, im, iM, hdec );
|
|
hufDecode( freq, hdec, uInt8Array, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
|
|
|
|
}
|
|
|
|
function applyLut( lut, data, nData ) {
|
|
|
|
for ( let i = 0; i < nData; ++ i ) {
|
|
|
|
data[ i ] = lut[ data[ i ] ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function predictor( source ) {
|
|
|
|
for ( let t = 1; t < source.length; t ++ ) {
|
|
|
|
const d = source[ t - 1 ] + source[ t ] - 128;
|
|
source[ t ] = d;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function interleaveScalar( source, out ) {
|
|
|
|
let t1 = 0;
|
|
let t2 = Math.floor( ( source.length + 1 ) / 2 );
|
|
let s = 0;
|
|
const stop = source.length - 1;
|
|
while ( true ) {
|
|
|
|
if ( s > stop ) break;
|
|
out[ s ++ ] = source[ t1 ++ ];
|
|
if ( s > stop ) break;
|
|
out[ s ++ ] = source[ t2 ++ ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function decodeRunLength( source ) {
|
|
|
|
let size = source.byteLength;
|
|
const out = new Array();
|
|
let p = 0;
|
|
const reader = new DataView( source );
|
|
while ( size > 0 ) {
|
|
|
|
const l = reader.getInt8( p ++ );
|
|
if ( l < 0 ) {
|
|
|
|
const count = - l;
|
|
size -= count + 1;
|
|
for ( let i = 0; i < count; i ++ ) {
|
|
|
|
out.push( reader.getUint8( p ++ ) );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
const count = l;
|
|
size -= 2;
|
|
const value = reader.getUint8( p ++ );
|
|
for ( let i = 0; i < count + 1; i ++ ) {
|
|
|
|
out.push( value );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
|
|
|
|
let dataView = new DataView( outBuffer.buffer );
|
|
const width = channelData[ cscSet.idx[ 0 ] ].width;
|
|
const height = channelData[ cscSet.idx[ 0 ] ].height;
|
|
const numComp = 3;
|
|
const numFullBlocksX = Math.floor( width / 8.0 );
|
|
const numBlocksX = Math.ceil( width / 8.0 );
|
|
const numBlocksY = Math.ceil( height / 8.0 );
|
|
const leftoverX = width - ( numBlocksX - 1 ) * 8;
|
|
const leftoverY = height - ( numBlocksY - 1 ) * 8;
|
|
const currAcComp = {
|
|
value: 0
|
|
};
|
|
const currDcComp = new Array( numComp );
|
|
const dctData = new Array( numComp );
|
|
const halfZigBlock = new Array( numComp );
|
|
const rowBlock = new Array( numComp );
|
|
const rowOffsets = new Array( numComp );
|
|
for ( let comp = 0; comp < numComp; ++ comp ) {
|
|
|
|
rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
|
|
currDcComp[ comp ] = comp < 1 ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
|
|
dctData[ comp ] = new Float32Array( 64 );
|
|
halfZigBlock[ comp ] = new Uint16Array( 64 );
|
|
rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
|
|
|
|
}
|
|
|
|
for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
|
|
|
|
let maxY = 8;
|
|
if ( blocky == numBlocksY - 1 ) maxY = leftoverY;
|
|
let maxX = 8;
|
|
for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
|
|
|
|
if ( blockx == numBlocksX - 1 ) maxX = leftoverX;
|
|
for ( let comp = 0; comp < numComp; ++ comp ) {
|
|
|
|
halfZigBlock[ comp ].fill( 0 );
|
|
|
|
// set block DC component
|
|
halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
|
|
// set block AC components
|
|
unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
|
|
|
|
// UnZigZag block to float
|
|
unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
|
|
// decode float dct
|
|
dctInverse( dctData[ comp ] );
|
|
|
|
}
|
|
|
|
if ( numComp == 3 ) {
|
|
|
|
csc709Inverse( dctData );
|
|
|
|
}
|
|
|
|
for ( let comp = 0; comp < numComp; ++ comp ) {
|
|
|
|
convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
|
|
|
|
}
|
|
|
|
} // blockx
|
|
|
|
let offset = 0;
|
|
for ( let comp = 0; comp < numComp; ++ comp ) {
|
|
|
|
const type = channelData[ cscSet.idx[ comp ] ].type;
|
|
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
|
|
|
|
offset = rowOffsets[ comp ][ y ];
|
|
for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
|
|
|
|
const src = blockx * 64 + ( y & 0x7 ) * 8;
|
|
dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
|
|
dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
|
|
dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
|
|
dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
|
|
dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
|
|
dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
|
|
dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
|
|
dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
|
|
offset += 8 * INT16_SIZE * type;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// handle partial X blocks
|
|
if ( numFullBlocksX != numBlocksX ) {
|
|
|
|
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
|
|
|
|
const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
|
|
const src = numFullBlocksX * 64 + ( y & 0x7 ) * 8;
|
|
for ( let x = 0; x < maxX; ++ x ) {
|
|
|
|
dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // comp
|
|
|
|
} // blocky
|
|
|
|
const halfRow = new Uint16Array( width );
|
|
dataView = new DataView( outBuffer.buffer );
|
|
|
|
// convert channels back to float, if needed
|
|
for ( let comp = 0; comp < numComp; ++ comp ) {
|
|
|
|
channelData[ cscSet.idx[ comp ] ].decoded = true;
|
|
const type = channelData[ cscSet.idx[ comp ] ].type;
|
|
if ( channelData[ comp ].type != 2 ) continue;
|
|
for ( let y = 0; y < height; ++ y ) {
|
|
|
|
const offset = rowOffsets[ comp ][ y ];
|
|
for ( let x = 0; x < width; ++ x ) {
|
|
|
|
halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
|
|
|
|
}
|
|
|
|
for ( let x = 0; x < width; ++ x ) {
|
|
|
|
dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
|
|
|
|
let acValue;
|
|
let dctComp = 1;
|
|
while ( dctComp < 64 ) {
|
|
|
|
acValue = acBuffer[ currAcComp.value ];
|
|
if ( acValue == 0xff00 ) {
|
|
|
|
dctComp = 64;
|
|
|
|
} else if ( acValue >> 8 == 0xff ) {
|
|
|
|
dctComp += acValue & 0xff;
|
|
|
|
} else {
|
|
|
|
halfZigBlock[ dctComp ] = acValue;
|
|
dctComp ++;
|
|
|
|
}
|
|
|
|
currAcComp.value ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function unZigZag( src, dst ) {
|
|
|
|
dst[ 0 ] = decodeFloat16( src[ 0 ] );
|
|
dst[ 1 ] = decodeFloat16( src[ 1 ] );
|
|
dst[ 2 ] = decodeFloat16( src[ 5 ] );
|
|
dst[ 3 ] = decodeFloat16( src[ 6 ] );
|
|
dst[ 4 ] = decodeFloat16( src[ 14 ] );
|
|
dst[ 5 ] = decodeFloat16( src[ 15 ] );
|
|
dst[ 6 ] = decodeFloat16( src[ 27 ] );
|
|
dst[ 7 ] = decodeFloat16( src[ 28 ] );
|
|
dst[ 8 ] = decodeFloat16( src[ 2 ] );
|
|
dst[ 9 ] = decodeFloat16( src[ 4 ] );
|
|
dst[ 10 ] = decodeFloat16( src[ 7 ] );
|
|
dst[ 11 ] = decodeFloat16( src[ 13 ] );
|
|
dst[ 12 ] = decodeFloat16( src[ 16 ] );
|
|
dst[ 13 ] = decodeFloat16( src[ 26 ] );
|
|
dst[ 14 ] = decodeFloat16( src[ 29 ] );
|
|
dst[ 15 ] = decodeFloat16( src[ 42 ] );
|
|
dst[ 16 ] = decodeFloat16( src[ 3 ] );
|
|
dst[ 17 ] = decodeFloat16( src[ 8 ] );
|
|
dst[ 18 ] = decodeFloat16( src[ 12 ] );
|
|
dst[ 19 ] = decodeFloat16( src[ 17 ] );
|
|
dst[ 20 ] = decodeFloat16( src[ 25 ] );
|
|
dst[ 21 ] = decodeFloat16( src[ 30 ] );
|
|
dst[ 22 ] = decodeFloat16( src[ 41 ] );
|
|
dst[ 23 ] = decodeFloat16( src[ 43 ] );
|
|
dst[ 24 ] = decodeFloat16( src[ 9 ] );
|
|
dst[ 25 ] = decodeFloat16( src[ 11 ] );
|
|
dst[ 26 ] = decodeFloat16( src[ 18 ] );
|
|
dst[ 27 ] = decodeFloat16( src[ 24 ] );
|
|
dst[ 28 ] = decodeFloat16( src[ 31 ] );
|
|
dst[ 29 ] = decodeFloat16( src[ 40 ] );
|
|
dst[ 30 ] = decodeFloat16( src[ 44 ] );
|
|
dst[ 31 ] = decodeFloat16( src[ 53 ] );
|
|
dst[ 32 ] = decodeFloat16( src[ 10 ] );
|
|
dst[ 33 ] = decodeFloat16( src[ 19 ] );
|
|
dst[ 34 ] = decodeFloat16( src[ 23 ] );
|
|
dst[ 35 ] = decodeFloat16( src[ 32 ] );
|
|
dst[ 36 ] = decodeFloat16( src[ 39 ] );
|
|
dst[ 37 ] = decodeFloat16( src[ 45 ] );
|
|
dst[ 38 ] = decodeFloat16( src[ 52 ] );
|
|
dst[ 39 ] = decodeFloat16( src[ 54 ] );
|
|
dst[ 40 ] = decodeFloat16( src[ 20 ] );
|
|
dst[ 41 ] = decodeFloat16( src[ 22 ] );
|
|
dst[ 42 ] = decodeFloat16( src[ 33 ] );
|
|
dst[ 43 ] = decodeFloat16( src[ 38 ] );
|
|
dst[ 44 ] = decodeFloat16( src[ 46 ] );
|
|
dst[ 45 ] = decodeFloat16( src[ 51 ] );
|
|
dst[ 46 ] = decodeFloat16( src[ 55 ] );
|
|
dst[ 47 ] = decodeFloat16( src[ 60 ] );
|
|
dst[ 48 ] = decodeFloat16( src[ 21 ] );
|
|
dst[ 49 ] = decodeFloat16( src[ 34 ] );
|
|
dst[ 50 ] = decodeFloat16( src[ 37 ] );
|
|
dst[ 51 ] = decodeFloat16( src[ 47 ] );
|
|
dst[ 52 ] = decodeFloat16( src[ 50 ] );
|
|
dst[ 53 ] = decodeFloat16( src[ 56 ] );
|
|
dst[ 54 ] = decodeFloat16( src[ 59 ] );
|
|
dst[ 55 ] = decodeFloat16( src[ 61 ] );
|
|
dst[ 56 ] = decodeFloat16( src[ 35 ] );
|
|
dst[ 57 ] = decodeFloat16( src[ 36 ] );
|
|
dst[ 58 ] = decodeFloat16( src[ 48 ] );
|
|
dst[ 59 ] = decodeFloat16( src[ 49 ] );
|
|
dst[ 60 ] = decodeFloat16( src[ 57 ] );
|
|
dst[ 61 ] = decodeFloat16( src[ 58 ] );
|
|
dst[ 62 ] = decodeFloat16( src[ 62 ] );
|
|
dst[ 63 ] = decodeFloat16( src[ 63 ] );
|
|
|
|
}
|
|
|
|
function dctInverse( data ) {
|
|
|
|
const a = 0.5 * Math.cos( 3.14159 / 4.0 );
|
|
const b = 0.5 * Math.cos( 3.14159 / 16.0 );
|
|
const c = 0.5 * Math.cos( 3.14159 / 8.0 );
|
|
const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
|
|
const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
|
|
const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
|
|
const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
|
|
const alpha = new Array( 4 );
|
|
const beta = new Array( 4 );
|
|
const theta = new Array( 4 );
|
|
const gamma = new Array( 4 );
|
|
for ( let row = 0; row < 8; ++ row ) {
|
|
|
|
const rowPtr = row * 8;
|
|
alpha[ 0 ] = c * data[ rowPtr + 2 ];
|
|
alpha[ 1 ] = f * data[ rowPtr + 2 ];
|
|
alpha[ 2 ] = c * data[ rowPtr + 6 ];
|
|
alpha[ 3 ] = f * data[ rowPtr + 6 ];
|
|
beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
|
|
beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
|
|
beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
|
|
beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
|
|
theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
|
|
theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
|
|
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
|
|
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
|
|
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
|
|
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
|
|
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
|
|
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
|
|
data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
|
|
data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
|
|
data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
|
|
data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
|
|
data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
|
|
data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
|
|
data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
|
|
data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
|
|
|
|
}
|
|
|
|
for ( let column = 0; column < 8; ++ column ) {
|
|
|
|
alpha[ 0 ] = c * data[ 16 + column ];
|
|
alpha[ 1 ] = f * data[ 16 + column ];
|
|
alpha[ 2 ] = c * data[ 48 + column ];
|
|
alpha[ 3 ] = f * data[ 48 + column ];
|
|
beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
|
|
beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
|
|
beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
|
|
beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
|
|
theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
|
|
theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
|
|
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
|
|
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
|
|
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
|
|
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
|
|
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
|
|
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
|
|
data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
|
|
data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
|
|
data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
|
|
data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
|
|
data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
|
|
data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
|
|
data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
|
|
data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function csc709Inverse( data ) {
|
|
|
|
for ( let i = 0; i < 64; ++ i ) {
|
|
|
|
const y = data[ 0 ][ i ];
|
|
const cb = data[ 1 ][ i ];
|
|
const cr = data[ 2 ][ i ];
|
|
data[ 0 ][ i ] = y + 1.5747 * cr;
|
|
data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
|
|
data[ 2 ][ i ] = y + 1.8556 * cb;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function convertToHalf( src, dst, idx ) {
|
|
|
|
for ( let i = 0; i < 64; ++ i ) {
|
|
|
|
dst[ idx + i ] = THREE.DataUtils.toHalfFloat( toLinear( src[ i ] ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function toLinear( float ) {
|
|
|
|
if ( float <= 1 ) {
|
|
|
|
return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
|
|
|
|
} else {
|
|
|
|
return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function uncompressRAW( info ) {
|
|
|
|
return new DataView( info.array.buffer, info.offset.value, info.size );
|
|
|
|
}
|
|
|
|
function uncompressRLE( info ) {
|
|
|
|
const compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
|
|
const rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
|
|
const tmpBuffer = new Uint8Array( rawBuffer.length );
|
|
predictor( rawBuffer ); // revert predictor
|
|
|
|
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
|
|
|
|
return new DataView( tmpBuffer.buffer );
|
|
|
|
}
|
|
|
|
function uncompressZIP( info ) {
|
|
|
|
const compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
|
|
if ( typeof fflate === 'undefined' ) {
|
|
|
|
console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
|
|
|
|
}
|
|
|
|
const rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
|
|
const tmpBuffer = new Uint8Array( rawBuffer.length );
|
|
predictor( rawBuffer ); // revert predictor
|
|
|
|
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
|
|
|
|
return new DataView( tmpBuffer.buffer );
|
|
|
|
}
|
|
|
|
function uncompressPIZ( info ) {
|
|
|
|
const inDataView = info.viewer;
|
|
const inOffset = {
|
|
value: info.offset.value
|
|
};
|
|
const outBuffer = new Uint16Array( info.width * info.scanlineBlockSize * ( info.channels * info.type ) );
|
|
const bitmap = new Uint8Array( BITMAP_SIZE );
|
|
|
|
// Setup channel info
|
|
let outBufferEnd = 0;
|
|
const pizChannelData = new Array( info.channels );
|
|
for ( let i = 0; i < info.channels; i ++ ) {
|
|
|
|
pizChannelData[ i ] = {};
|
|
pizChannelData[ i ][ 'start' ] = outBufferEnd;
|
|
pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
|
|
pizChannelData[ i ][ 'nx' ] = info.width;
|
|
pizChannelData[ i ][ 'ny' ] = info.lines;
|
|
pizChannelData[ i ][ 'size' ] = info.type;
|
|
outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
|
|
|
|
}
|
|
|
|
// Read range compression data
|
|
|
|
const minNonZero = parseUint16( inDataView, inOffset );
|
|
const maxNonZero = parseUint16( inDataView, inOffset );
|
|
if ( maxNonZero >= BITMAP_SIZE ) {
|
|
|
|
throw new Error( 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE' );
|
|
|
|
}
|
|
|
|
if ( minNonZero <= maxNonZero ) {
|
|
|
|
for ( let i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
|
|
|
|
bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Reverse LUT
|
|
const lut = new Uint16Array( USHORT_RANGE );
|
|
const maxValue = reverseLutFromBitmap( bitmap, lut );
|
|
const length = parseUint32( inDataView, inOffset );
|
|
|
|
// Huffman decoding
|
|
hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
|
|
|
|
// Wavelet decoding
|
|
for ( let i = 0; i < info.channels; ++ i ) {
|
|
|
|
const cd = pizChannelData[ i ];
|
|
for ( let j = 0; j < pizChannelData[ i ].size; ++ j ) {
|
|
|
|
wav2Decode( outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Expand the pixel data to their original range
|
|
applyLut( lut, outBuffer, outBufferEnd );
|
|
|
|
// Rearrange the pixel data into the format expected by the caller.
|
|
let tmpOffset = 0;
|
|
const tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
|
|
for ( let y = 0; y < info.lines; y ++ ) {
|
|
|
|
for ( let c = 0; c < info.channels; c ++ ) {
|
|
|
|
const cd = pizChannelData[ c ];
|
|
const n = cd.nx * cd.size;
|
|
const cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
|
|
tmpBuffer.set( cp, tmpOffset );
|
|
tmpOffset += n * INT16_SIZE;
|
|
cd.end += n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new DataView( tmpBuffer.buffer );
|
|
|
|
}
|
|
|
|
function uncompressPXR( info ) {
|
|
|
|
const compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
|
|
if ( typeof fflate === 'undefined' ) {
|
|
|
|
console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
|
|
|
|
}
|
|
|
|
const rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
|
|
|
|
const sz = info.lines * info.channels * info.width;
|
|
const tmpBuffer = info.type == 1 ? new Uint16Array( sz ) : new Uint32Array( sz );
|
|
let tmpBufferEnd = 0;
|
|
let writePtr = 0;
|
|
const ptr = new Array( 4 );
|
|
for ( let y = 0; y < info.lines; y ++ ) {
|
|
|
|
for ( let c = 0; c < info.channels; c ++ ) {
|
|
|
|
let pixel = 0;
|
|
switch ( info.type ) {
|
|
|
|
case 1:
|
|
ptr[ 0 ] = tmpBufferEnd;
|
|
ptr[ 1 ] = ptr[ 0 ] + info.width;
|
|
tmpBufferEnd = ptr[ 1 ] + info.width;
|
|
for ( let j = 0; j < info.width; ++ j ) {
|
|
|
|
const diff = rawBuffer[ ptr[ 0 ] ++ ] << 8 | rawBuffer[ ptr[ 1 ] ++ ];
|
|
pixel += diff;
|
|
tmpBuffer[ writePtr ] = pixel;
|
|
writePtr ++;
|
|
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
ptr[ 0 ] = tmpBufferEnd;
|
|
ptr[ 1 ] = ptr[ 0 ] + info.width;
|
|
ptr[ 2 ] = ptr[ 1 ] + info.width;
|
|
tmpBufferEnd = ptr[ 2 ] + info.width;
|
|
for ( let j = 0; j < info.width; ++ j ) {
|
|
|
|
const diff = rawBuffer[ ptr[ 0 ] ++ ] << 24 | rawBuffer[ ptr[ 1 ] ++ ] << 16 | rawBuffer[ ptr[ 2 ] ++ ] << 8;
|
|
pixel += diff;
|
|
tmpBuffer[ writePtr ] = pixel;
|
|
writePtr ++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new DataView( tmpBuffer.buffer );
|
|
|
|
}
|
|
|
|
function uncompressDWA( info ) {
|
|
|
|
const inDataView = info.viewer;
|
|
const inOffset = {
|
|
value: info.offset.value
|
|
};
|
|
const outBuffer = new Uint8Array( info.width * info.lines * ( info.channels * info.type * INT16_SIZE ) );
|
|
|
|
// Read compression header information
|
|
const dwaHeader = {
|
|
version: parseInt64( inDataView, inOffset ),
|
|
unknownUncompressedSize: parseInt64( inDataView, inOffset ),
|
|
unknownCompressedSize: parseInt64( inDataView, inOffset ),
|
|
acCompressedSize: parseInt64( inDataView, inOffset ),
|
|
dcCompressedSize: parseInt64( inDataView, inOffset ),
|
|
rleCompressedSize: parseInt64( inDataView, inOffset ),
|
|
rleUncompressedSize: parseInt64( inDataView, inOffset ),
|
|
rleRawSize: parseInt64( inDataView, inOffset ),
|
|
totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
|
|
totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
|
|
acCompression: parseInt64( inDataView, inOffset )
|
|
};
|
|
if ( dwaHeader.version < 2 ) throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported' );
|
|
|
|
// Read channel ruleset information
|
|
const channelRules = new Array();
|
|
let ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
|
|
while ( ruleSize > 0 ) {
|
|
|
|
const name = parseNullTerminatedString( inDataView.buffer, inOffset );
|
|
const value = parseUint8( inDataView, inOffset );
|
|
const compression = value >> 2 & 3;
|
|
const csc = ( value >> 4 ) - 1;
|
|
const index = new Int8Array( [ csc ] )[ 0 ];
|
|
const type = parseUint8( inDataView, inOffset );
|
|
channelRules.push( {
|
|
name: name,
|
|
index: index,
|
|
type: type,
|
|
compression: compression
|
|
} );
|
|
ruleSize -= name.length + 3;
|
|
|
|
}
|
|
|
|
// Classify channels
|
|
const channels = EXRHeader.channels;
|
|
const channelData = new Array( info.channels );
|
|
for ( let i = 0; i < info.channels; ++ i ) {
|
|
|
|
const cd = channelData[ i ] = {};
|
|
const channel = channels[ i ];
|
|
cd.name = channel.name;
|
|
cd.compression = UNKNOWN;
|
|
cd.decoded = false;
|
|
cd.type = channel.pixelType;
|
|
cd.pLinear = channel.pLinear;
|
|
cd.width = info.width;
|
|
cd.height = info.lines;
|
|
|
|
}
|
|
|
|
const cscSet = {
|
|
idx: new Array( 3 )
|
|
};
|
|
for ( let offset = 0; offset < info.channels; ++ offset ) {
|
|
|
|
const cd = channelData[ offset ];
|
|
for ( let i = 0; i < channelRules.length; ++ i ) {
|
|
|
|
const rule = channelRules[ i ];
|
|
if ( cd.name == rule.name ) {
|
|
|
|
cd.compression = rule.compression;
|
|
if ( rule.index >= 0 ) {
|
|
|
|
cscSet.idx[ rule.index ] = offset;
|
|
|
|
}
|
|
|
|
cd.offset = offset;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let acBuffer, dcBuffer, rleBuffer;
|
|
|
|
// Read DCT - AC component data
|
|
if ( dwaHeader.acCompressedSize > 0 ) {
|
|
|
|
switch ( dwaHeader.acCompression ) {
|
|
|
|
case STATIC_HUFFMAN:
|
|
acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
|
|
hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
|
|
break;
|
|
case DEFLATE:
|
|
const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
|
|
const data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
|
|
acBuffer = new Uint16Array( data.buffer );
|
|
inOffset.value += dwaHeader.totalAcUncompressedCount;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Read DCT - DC component data
|
|
if ( dwaHeader.dcCompressedSize > 0 ) {
|
|
|
|
const zlibInfo = {
|
|
array: info.array,
|
|
offset: inOffset,
|
|
size: dwaHeader.dcCompressedSize
|
|
};
|
|
dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
|
|
inOffset.value += dwaHeader.dcCompressedSize;
|
|
|
|
}
|
|
|
|
// Read RLE compressed data
|
|
if ( dwaHeader.rleRawSize > 0 ) {
|
|
|
|
const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
|
|
const data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
|
|
rleBuffer = decodeRunLength( data.buffer );
|
|
inOffset.value += dwaHeader.rleCompressedSize;
|
|
|
|
}
|
|
|
|
// Prepare outbuffer data offset
|
|
let outBufferEnd = 0;
|
|
const rowOffsets = new Array( channelData.length );
|
|
for ( let i = 0; i < rowOffsets.length; ++ i ) {
|
|
|
|
rowOffsets[ i ] = new Array();
|
|
|
|
}
|
|
|
|
for ( let y = 0; y < info.lines; ++ y ) {
|
|
|
|
for ( let chan = 0; chan < channelData.length; ++ chan ) {
|
|
|
|
rowOffsets[ chan ].push( outBufferEnd );
|
|
outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Lossy DCT decode RGB channels
|
|
lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
|
|
|
|
// Decode other channels
|
|
for ( let i = 0; i < channelData.length; ++ i ) {
|
|
|
|
const cd = channelData[ i ];
|
|
if ( cd.decoded ) continue;
|
|
switch ( cd.compression ) {
|
|
|
|
case RLE:
|
|
let row = 0;
|
|
let rleOffset = 0;
|
|
for ( let y = 0; y < info.lines; ++ y ) {
|
|
|
|
let rowOffsetBytes = rowOffsets[ i ][ row ];
|
|
for ( let x = 0; x < cd.width; ++ x ) {
|
|
|
|
for ( let byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
|
|
|
|
outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
|
|
|
|
}
|
|
|
|
rleOffset ++;
|
|
|
|
}
|
|
|
|
row ++;
|
|
|
|
}
|
|
|
|
break;
|
|
case LOSSY_DCT: // skip
|
|
|
|
default:
|
|
throw new Error( 'EXRLoader.parse: unsupported channel compression' );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new DataView( outBuffer.buffer );
|
|
|
|
}
|
|
|
|
function parseNullTerminatedString( buffer, offset ) {
|
|
|
|
const uintBuffer = new Uint8Array( buffer );
|
|
let endOffset = 0;
|
|
while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
|
|
|
|
endOffset += 1;
|
|
|
|
}
|
|
|
|
const stringValue = new TextDecoder().decode( uintBuffer.slice( offset.value, offset.value + endOffset ) );
|
|
offset.value = offset.value + endOffset + 1;
|
|
return stringValue;
|
|
|
|
}
|
|
|
|
function parseFixedLengthString( buffer, offset, size ) {
|
|
|
|
const stringValue = new TextDecoder().decode( new Uint8Array( buffer ).slice( offset.value, offset.value + size ) );
|
|
offset.value = offset.value + size;
|
|
return stringValue;
|
|
|
|
}
|
|
|
|
function parseRational( dataView, offset ) {
|
|
|
|
const x = parseInt32( dataView, offset );
|
|
const y = parseUint32( dataView, offset );
|
|
return [ x, y ];
|
|
|
|
}
|
|
|
|
function parseTimecode( dataView, offset ) {
|
|
|
|
const x = parseUint32( dataView, offset );
|
|
const y = parseUint32( dataView, offset );
|
|
return [ x, y ];
|
|
|
|
}
|
|
|
|
function parseInt32( dataView, offset ) {
|
|
|
|
const Int32 = dataView.getInt32( offset.value, true );
|
|
offset.value = offset.value + INT32_SIZE;
|
|
return Int32;
|
|
|
|
}
|
|
|
|
function parseUint32( dataView, offset ) {
|
|
|
|
const Uint32 = dataView.getUint32( offset.value, true );
|
|
offset.value = offset.value + INT32_SIZE;
|
|
return Uint32;
|
|
|
|
}
|
|
|
|
function parseUint8Array( uInt8Array, offset ) {
|
|
|
|
const Uint8 = uInt8Array[ offset.value ];
|
|
offset.value = offset.value + INT8_SIZE;
|
|
return Uint8;
|
|
|
|
}
|
|
|
|
function parseUint8( dataView, offset ) {
|
|
|
|
const Uint8 = dataView.getUint8( offset.value );
|
|
offset.value = offset.value + INT8_SIZE;
|
|
return Uint8;
|
|
|
|
}
|
|
|
|
const parseInt64 = function ( dataView, offset ) {
|
|
|
|
const Int64 = Number( dataView.getBigInt64( offset.value, true ) );
|
|
offset.value += ULONG_SIZE;
|
|
return Int64;
|
|
|
|
};
|
|
|
|
function parseFloat32( dataView, offset ) {
|
|
|
|
const float = dataView.getFloat32( offset.value, true );
|
|
offset.value += FLOAT32_SIZE;
|
|
return float;
|
|
|
|
}
|
|
|
|
function decodeFloat32( dataView, offset ) {
|
|
|
|
return THREE.DataUtils.toHalfFloat( parseFloat32( dataView, offset ) );
|
|
|
|
}
|
|
|
|
// https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
|
|
function decodeFloat16( binary ) {
|
|
|
|
const exponent = ( binary & 0x7C00 ) >> 10,
|
|
fraction = binary & 0x03FF;
|
|
return ( binary >> 15 ? - 1 : 1 ) * ( exponent ? exponent === 0x1F ? fraction ? NaN : Infinity : Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 ) : 6.103515625e-5 * ( fraction / 0x400 ) );
|
|
|
|
}
|
|
|
|
function parseUint16( dataView, offset ) {
|
|
|
|
const Uint16 = dataView.getUint16( offset.value, true );
|
|
offset.value += INT16_SIZE;
|
|
return Uint16;
|
|
|
|
}
|
|
|
|
function parseFloat16( buffer, offset ) {
|
|
|
|
return decodeFloat16( parseUint16( buffer, offset ) );
|
|
|
|
}
|
|
|
|
function parseChlist( dataView, buffer, offset, size ) {
|
|
|
|
const startOffset = offset.value;
|
|
const channels = [];
|
|
while ( offset.value < startOffset + size - 1 ) {
|
|
|
|
const name = parseNullTerminatedString( buffer, offset );
|
|
const pixelType = parseInt32( dataView, offset );
|
|
const pLinear = parseUint8( dataView, offset );
|
|
offset.value += 3; // reserved, three chars
|
|
const xSampling = parseInt32( dataView, offset );
|
|
const ySampling = parseInt32( dataView, offset );
|
|
channels.push( {
|
|
name: name,
|
|
pixelType: pixelType,
|
|
pLinear: pLinear,
|
|
xSampling: xSampling,
|
|
ySampling: ySampling
|
|
} );
|
|
|
|
}
|
|
|
|
offset.value += 1;
|
|
return channels;
|
|
|
|
}
|
|
|
|
function parseChromaticities( dataView, offset ) {
|
|
|
|
const redX = parseFloat32( dataView, offset );
|
|
const redY = parseFloat32( dataView, offset );
|
|
const greenX = parseFloat32( dataView, offset );
|
|
const greenY = parseFloat32( dataView, offset );
|
|
const blueX = parseFloat32( dataView, offset );
|
|
const blueY = parseFloat32( dataView, offset );
|
|
const whiteX = parseFloat32( dataView, offset );
|
|
const whiteY = parseFloat32( dataView, offset );
|
|
return {
|
|
redX: redX,
|
|
redY: redY,
|
|
greenX: greenX,
|
|
greenY: greenY,
|
|
blueX: blueX,
|
|
blueY: blueY,
|
|
whiteX: whiteX,
|
|
whiteY: whiteY
|
|
};
|
|
|
|
}
|
|
|
|
function parseCompression( dataView, offset ) {
|
|
|
|
const compressionCodes = [ 'NO_COMPRESSION', 'RLE_COMPRESSION', 'ZIPS_COMPRESSION', 'ZIP_COMPRESSION', 'PIZ_COMPRESSION', 'PXR24_COMPRESSION', 'B44_COMPRESSION', 'B44A_COMPRESSION', 'DWAA_COMPRESSION', 'DWAB_COMPRESSION' ];
|
|
const compression = parseUint8( dataView, offset );
|
|
return compressionCodes[ compression ];
|
|
|
|
}
|
|
|
|
function parseBox2i( dataView, offset ) {
|
|
|
|
const xMin = parseUint32( dataView, offset );
|
|
const yMin = parseUint32( dataView, offset );
|
|
const xMax = parseUint32( dataView, offset );
|
|
const yMax = parseUint32( dataView, offset );
|
|
return {
|
|
xMin: xMin,
|
|
yMin: yMin,
|
|
xMax: xMax,
|
|
yMax: yMax
|
|
};
|
|
|
|
}
|
|
|
|
function parseLineOrder( dataView, offset ) {
|
|
|
|
const lineOrders = [ 'INCREASING_Y' ];
|
|
const lineOrder = parseUint8( dataView, offset );
|
|
return lineOrders[ lineOrder ];
|
|
|
|
}
|
|
|
|
function parseV2f( dataView, offset ) {
|
|
|
|
const x = parseFloat32( dataView, offset );
|
|
const y = parseFloat32( dataView, offset );
|
|
return [ x, y ];
|
|
|
|
}
|
|
|
|
function parseV3f( dataView, offset ) {
|
|
|
|
const x = parseFloat32( dataView, offset );
|
|
const y = parseFloat32( dataView, offset );
|
|
const z = parseFloat32( dataView, offset );
|
|
return [ x, y, z ];
|
|
|
|
}
|
|
|
|
function parseValue( dataView, buffer, offset, type, size ) {
|
|
|
|
if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
|
|
|
|
return parseFixedLengthString( buffer, offset, size );
|
|
|
|
} else if ( type === 'chlist' ) {
|
|
|
|
return parseChlist( dataView, buffer, offset, size );
|
|
|
|
} else if ( type === 'chromaticities' ) {
|
|
|
|
return parseChromaticities( dataView, offset );
|
|
|
|
} else if ( type === 'compression' ) {
|
|
|
|
return parseCompression( dataView, offset );
|
|
|
|
} else if ( type === 'box2i' ) {
|
|
|
|
return parseBox2i( dataView, offset );
|
|
|
|
} else if ( type === 'lineOrder' ) {
|
|
|
|
return parseLineOrder( dataView, offset );
|
|
|
|
} else if ( type === 'float' ) {
|
|
|
|
return parseFloat32( dataView, offset );
|
|
|
|
} else if ( type === 'v2f' ) {
|
|
|
|
return parseV2f( dataView, offset );
|
|
|
|
} else if ( type === 'v3f' ) {
|
|
|
|
return parseV3f( dataView, offset );
|
|
|
|
} else if ( type === 'int' ) {
|
|
|
|
return parseInt32( dataView, offset );
|
|
|
|
} else if ( type === 'rational' ) {
|
|
|
|
return parseRational( dataView, offset );
|
|
|
|
} else if ( type === 'timecode' ) {
|
|
|
|
return parseTimecode( dataView, offset );
|
|
|
|
} else if ( type === 'preview' ) {
|
|
|
|
offset.value += size;
|
|
return 'skipped';
|
|
|
|
} else {
|
|
|
|
offset.value += size;
|
|
return undefined;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function parseHeader( dataView, buffer, offset ) {
|
|
|
|
const EXRHeader = {};
|
|
if ( dataView.getUint32( 0, true ) != 20000630 ) {
|
|
|
|
// magic
|
|
|
|
throw new Error( 'THREE.EXRLoader: provided file doesn\'t appear to be in OpenEXR format.' );
|
|
|
|
}
|
|
|
|
EXRHeader.version = dataView.getUint8( 4 );
|
|
const spec = dataView.getUint8( 5 ); // fullMask
|
|
|
|
EXRHeader.spec = {
|
|
singleTile: !! ( spec & 2 ),
|
|
longName: !! ( spec & 4 ),
|
|
deepFormat: !! ( spec & 8 ),
|
|
multiPart: !! ( spec & 16 )
|
|
};
|
|
|
|
// start of header
|
|
|
|
offset.value = 8; // start at 8 - after pre-amble
|
|
|
|
let keepReading = true;
|
|
while ( keepReading ) {
|
|
|
|
const attributeName = parseNullTerminatedString( buffer, offset );
|
|
if ( attributeName == 0 ) {
|
|
|
|
keepReading = false;
|
|
|
|
} else {
|
|
|
|
const attributeType = parseNullTerminatedString( buffer, offset );
|
|
const attributeSize = parseUint32( dataView, offset );
|
|
const attributeValue = parseValue( dataView, buffer, offset, attributeType, attributeSize );
|
|
if ( attributeValue === undefined ) {
|
|
|
|
console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${attributeType}\'.` );
|
|
|
|
} else {
|
|
|
|
EXRHeader[ attributeName ] = attributeValue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ( spec & ~ 0x04 ) != 0 ) {
|
|
|
|
// unsupported tiled, deep-image, multi-part
|
|
|
|
console.error( 'EXRHeader:', EXRHeader );
|
|
throw new Error( 'THREE.EXRLoader: provided file is currently unsupported.' );
|
|
|
|
}
|
|
|
|
return EXRHeader;
|
|
|
|
}
|
|
|
|
function setupDecoder( EXRHeader, dataView, uInt8Array, offset, outputType ) {
|
|
|
|
const EXRDecoder = {
|
|
size: 0,
|
|
viewer: dataView,
|
|
array: uInt8Array,
|
|
offset: offset,
|
|
width: EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1,
|
|
height: EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1,
|
|
channels: EXRHeader.channels.length,
|
|
bytesPerLine: null,
|
|
lines: null,
|
|
inputSize: null,
|
|
type: EXRHeader.channels[ 0 ].pixelType,
|
|
uncompress: null,
|
|
getter: null,
|
|
format: null,
|
|
encoding: null
|
|
};
|
|
switch ( EXRHeader.compression ) {
|
|
|
|
case 'NO_COMPRESSION':
|
|
EXRDecoder.lines = 1;
|
|
EXRDecoder.uncompress = uncompressRAW;
|
|
break;
|
|
case 'RLE_COMPRESSION':
|
|
EXRDecoder.lines = 1;
|
|
EXRDecoder.uncompress = uncompressRLE;
|
|
break;
|
|
case 'ZIPS_COMPRESSION':
|
|
EXRDecoder.lines = 1;
|
|
EXRDecoder.uncompress = uncompressZIP;
|
|
break;
|
|
case 'ZIP_COMPRESSION':
|
|
EXRDecoder.lines = 16;
|
|
EXRDecoder.uncompress = uncompressZIP;
|
|
break;
|
|
case 'PIZ_COMPRESSION':
|
|
EXRDecoder.lines = 32;
|
|
EXRDecoder.uncompress = uncompressPIZ;
|
|
break;
|
|
case 'PXR24_COMPRESSION':
|
|
EXRDecoder.lines = 16;
|
|
EXRDecoder.uncompress = uncompressPXR;
|
|
break;
|
|
case 'DWAA_COMPRESSION':
|
|
EXRDecoder.lines = 32;
|
|
EXRDecoder.uncompress = uncompressDWA;
|
|
break;
|
|
case 'DWAB_COMPRESSION':
|
|
EXRDecoder.lines = 256;
|
|
EXRDecoder.uncompress = uncompressDWA;
|
|
break;
|
|
default:
|
|
throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported' );
|
|
|
|
}
|
|
|
|
EXRDecoder.scanlineBlockSize = EXRDecoder.lines;
|
|
if ( EXRDecoder.type == 1 ) {
|
|
|
|
// half
|
|
switch ( outputType ) {
|
|
|
|
case THREE.FloatType:
|
|
EXRDecoder.getter = parseFloat16;
|
|
EXRDecoder.inputSize = INT16_SIZE;
|
|
break;
|
|
case THREE.HalfFloatType:
|
|
EXRDecoder.getter = parseUint16;
|
|
EXRDecoder.inputSize = INT16_SIZE;
|
|
break;
|
|
|
|
}
|
|
|
|
} else if ( EXRDecoder.type == 2 ) {
|
|
|
|
// float
|
|
switch ( outputType ) {
|
|
|
|
case THREE.FloatType:
|
|
EXRDecoder.getter = parseFloat32;
|
|
EXRDecoder.inputSize = FLOAT32_SIZE;
|
|
break;
|
|
case THREE.HalfFloatType:
|
|
EXRDecoder.getter = decodeFloat32;
|
|
EXRDecoder.inputSize = FLOAT32_SIZE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
throw new Error( 'EXRLoader.parse: unsupported pixelType ' + EXRDecoder.type + ' for ' + EXRHeader.compression + '.' );
|
|
|
|
}
|
|
|
|
EXRDecoder.blockCount = ( EXRHeader.dataWindow.yMax + 1 ) / EXRDecoder.scanlineBlockSize;
|
|
for ( let i = 0; i < EXRDecoder.blockCount; i ++ ) parseInt64( dataView, offset ); // scanlineOffset
|
|
|
|
// we should be passed the scanline offset table, ready to start reading pixel data.
|
|
|
|
// RGB images will be converted to RGBA format, preventing software emulation in select devices.
|
|
EXRDecoder.outputChannels = EXRDecoder.channels == 3 ? 4 : EXRDecoder.channels;
|
|
const size = EXRDecoder.width * EXRDecoder.height * EXRDecoder.outputChannels;
|
|
switch ( outputType ) {
|
|
|
|
case THREE.FloatType:
|
|
EXRDecoder.byteArray = new Float32Array( size );
|
|
|
|
// Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
|
|
if ( EXRDecoder.channels < EXRDecoder.outputChannels ) EXRDecoder.byteArray.fill( 1, 0, size );
|
|
break;
|
|
case THREE.HalfFloatType:
|
|
EXRDecoder.byteArray = new Uint16Array( size );
|
|
if ( EXRDecoder.channels < EXRDecoder.outputChannels ) EXRDecoder.byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
|
|
|
|
break;
|
|
default:
|
|
console.error( 'THREE.EXRLoader: unsupported type: ', outputType );
|
|
break;
|
|
|
|
}
|
|
|
|
EXRDecoder.bytesPerLine = EXRDecoder.width * EXRDecoder.inputSize * EXRDecoder.channels;
|
|
if ( EXRDecoder.outputChannels == 4 ) {
|
|
|
|
EXRDecoder.format = THREE.RGBAFormat;
|
|
EXRDecoder.encoding = THREE.LinearEncoding;
|
|
|
|
} else {
|
|
|
|
EXRDecoder.format = THREE.RedFormat;
|
|
EXRDecoder.encoding = THREE.LinearEncoding;
|
|
|
|
}
|
|
|
|
return EXRDecoder;
|
|
|
|
}
|
|
|
|
// start parsing file [START]
|
|
|
|
const bufferDataView = new DataView( buffer );
|
|
const uInt8Array = new Uint8Array( buffer );
|
|
const offset = {
|
|
value: 0
|
|
};
|
|
|
|
// get header information and validate format.
|
|
const EXRHeader = parseHeader( bufferDataView, buffer, offset );
|
|
|
|
// get input compression information and prepare decoding.
|
|
const EXRDecoder = setupDecoder( EXRHeader, bufferDataView, uInt8Array, offset, this.type );
|
|
const tmpOffset = {
|
|
value: 0
|
|
};
|
|
const channelOffsets = {
|
|
R: 0,
|
|
G: 1,
|
|
B: 2,
|
|
A: 3,
|
|
Y: 0
|
|
};
|
|
for ( let scanlineBlockIdx = 0; scanlineBlockIdx < EXRDecoder.height / EXRDecoder.scanlineBlockSize; scanlineBlockIdx ++ ) {
|
|
|
|
const line = parseUint32( bufferDataView, offset ); // line_no
|
|
EXRDecoder.size = parseUint32( bufferDataView, offset ); // data_len
|
|
EXRDecoder.lines = line + EXRDecoder.scanlineBlockSize > EXRDecoder.height ? EXRDecoder.height - line : EXRDecoder.scanlineBlockSize;
|
|
const isCompressed = EXRDecoder.size < EXRDecoder.lines * EXRDecoder.bytesPerLine;
|
|
const viewer = isCompressed ? EXRDecoder.uncompress( EXRDecoder ) : uncompressRAW( EXRDecoder );
|
|
offset.value += EXRDecoder.size;
|
|
for ( let line_y = 0; line_y < EXRDecoder.scanlineBlockSize; line_y ++ ) {
|
|
|
|
const true_y = line_y + scanlineBlockIdx * EXRDecoder.scanlineBlockSize;
|
|
if ( true_y >= EXRDecoder.height ) break;
|
|
for ( let channelID = 0; channelID < EXRDecoder.channels; channelID ++ ) {
|
|
|
|
const cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
|
|
for ( let x = 0; x < EXRDecoder.width; x ++ ) {
|
|
|
|
tmpOffset.value = ( line_y * ( EXRDecoder.channels * EXRDecoder.width ) + channelID * EXRDecoder.width + x ) * EXRDecoder.inputSize;
|
|
const outIndex = ( EXRDecoder.height - 1 - true_y ) * ( EXRDecoder.width * EXRDecoder.outputChannels ) + x * EXRDecoder.outputChannels + cOff;
|
|
EXRDecoder.byteArray[ outIndex ] = EXRDecoder.getter( viewer, tmpOffset );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return {
|
|
header: EXRHeader,
|
|
width: EXRDecoder.width,
|
|
height: EXRDecoder.height,
|
|
data: EXRDecoder.byteArray,
|
|
format: EXRDecoder.format,
|
|
encoding: EXRDecoder.encoding,
|
|
type: this.type
|
|
};
|
|
|
|
}
|
|
setDataType( value ) {
|
|
|
|
this.type = value;
|
|
return this;
|
|
|
|
}
|
|
load( url, onLoad, onProgress, onError ) {
|
|
|
|
function onLoadCallback( texture, texData ) {
|
|
|
|
texture.encoding = texData.encoding;
|
|
texture.minFilter = THREE.LinearFilter;
|
|
texture.magFilter = THREE.LinearFilter;
|
|
texture.generateMipmaps = false;
|
|
texture.flipY = false;
|
|
if ( onLoad ) onLoad( texture, texData );
|
|
|
|
}
|
|
|
|
return super.load( url, onLoadCallback, onProgress, onError );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
THREE.EXRLoader = EXRLoader;
|
|
|
|
} )();
|
|
|