You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

3216 lines
78 KiB

import {
GridHelper,
EllipseCurve,
BufferGeometry,
Line,
LineBasicMaterial,
Raycaster,
Group,
Box3,
Sphere,
Quaternion,
Vector2,
Vector3,
Matrix4,
MathUtils,
EventDispatcher
} from 'three';
//trackball state
const STATE = {
IDLE: Symbol(),
ROTATE: Symbol(),
PAN: Symbol(),
SCALE: Symbol(),
FOV: Symbol(),
FOCUS: Symbol(),
ZROTATE: Symbol(),
TOUCH_MULTI: Symbol(),
ANIMATION_FOCUS: Symbol(),
ANIMATION_ROTATE: Symbol()
};
const INPUT = {
NONE: Symbol(),
ONE_FINGER: Symbol(),
ONE_FINGER_SWITCHED: Symbol(),
TWO_FINGER: Symbol(),
MULT_FINGER: Symbol(),
CURSOR: Symbol()
};
//cursor center coordinates
const _center = {
x: 0,
y: 0
};
//transformation matrices for gizmos and camera
const _transformation = {
camera: new Matrix4(),
gizmos: new Matrix4()
};
//events
const _changeEvent = { type: 'change' };
const _startEvent = { type: 'start' };
const _endEvent = { type: 'end' };
const _raycaster = new Raycaster();
const _offset = new Vector3();
const _gizmoMatrixStateTemp = new Matrix4();
const _cameraMatrixStateTemp = new Matrix4();
const _scalePointTemp = new Vector3();
/**
*
* @param {Camera} camera Virtual camera used in the scene
* @param {HTMLElement} domElement Renderer's dom element
* @param {Scene} scene The scene to be rendered
*/
class ArcballControls extends EventDispatcher {
constructor( camera, domElement, scene = null ) {
super();
this.camera = null;
this.domElement = domElement;
this.scene = scene;
this.target = new Vector3();
this._currentTarget = new Vector3();
this.radiusFactor = 0.67;
this.mouseActions = [];
this._mouseOp = null;
//global vectors and matrices that are used in some operations to avoid creating new objects every time (e.g. every time cursor moves)
this._v2_1 = new Vector2();
this._v3_1 = new Vector3();
this._v3_2 = new Vector3();
this._m4_1 = new Matrix4();
this._m4_2 = new Matrix4();
this._quat = new Quaternion();
//transformation matrices
this._translationMatrix = new Matrix4(); //matrix for translation operation
this._rotationMatrix = new Matrix4(); //matrix for rotation operation
this._scaleMatrix = new Matrix4(); //matrix for scaling operation
this._rotationAxis = new Vector3(); //axis for rotate operation
//camera state
this._cameraMatrixState = new Matrix4();
this._cameraProjectionState = new Matrix4();
this._fovState = 1;
this._upState = new Vector3();
this._zoomState = 1;
this._nearPos = 0;
this._farPos = 0;
this._gizmoMatrixState = new Matrix4();
//initial values
this._up0 = new Vector3();
this._zoom0 = 1;
this._fov0 = 0;
this._initialNear = 0;
this._nearPos0 = 0;
this._initialFar = 0;
this._farPos0 = 0;
this._cameraMatrixState0 = new Matrix4();
this._gizmoMatrixState0 = new Matrix4();
//pointers array
this._button = - 1;
this._touchStart = [];
this._touchCurrent = [];
this._input = INPUT.NONE;
//two fingers touch interaction
this._switchSensibility = 32; //minimum movement to be performed to fire single pan start after the second finger has been released
this._startFingerDistance = 0; //distance between two fingers
this._currentFingerDistance = 0;
this._startFingerRotation = 0; //amount of rotation performed with two fingers
this._currentFingerRotation = 0;
//double tap
this._devPxRatio = 0;
this._downValid = true;
this._nclicks = 0;
this._downEvents = [];
this._downStart = 0; //pointerDown time
this._clickStart = 0; //first click time
this._maxDownTime = 250;
this._maxInterval = 300;
this._posThreshold = 24;
this._movementThreshold = 24;
//cursor positions
this._currentCursorPosition = new Vector3();
this._startCursorPosition = new Vector3();
//grid
this._grid = null; //grid to be visualized during pan operation
this._gridPosition = new Vector3();
//gizmos
this._gizmos = new Group();
this._curvePts = 128;
//animations
this._timeStart = - 1; //initial time
this._animationId = - 1;
//focus animation
this.focusAnimationTime = 500; //duration of focus animation in ms
//rotate animation
this._timePrev = 0; //time at which previous rotate operation has been detected
this._timeCurrent = 0; //time at which current rotate operation has been detected
this._anglePrev = 0; //angle of previous rotation
this._angleCurrent = 0; //angle of current rotation
this._cursorPosPrev = new Vector3(); //cursor position when previous rotate operation has been detected
this._cursorPosCurr = new Vector3();//cursor position when current rotate operation has been detected
this._wPrev = 0; //angular velocity of the previous rotate operation
this._wCurr = 0; //angular velocity of the current rotate operation
//parameters
this.adjustNearFar = false;
this.scaleFactor = 1.1; //zoom/distance multiplier
this.dampingFactor = 25;
this.wMax = 20; //maximum angular velocity allowed
this.enableAnimations = true; //if animations should be performed
this.enableGrid = false; //if grid should be showed during pan operation
this.cursorZoom = false; //if wheel zoom should be cursor centered
this.minFov = 5;
this.maxFov = 90;
this.enabled = true;
this.enablePan = true;
this.enableRotate = true;
this.enableZoom = true;
this.enableGizmos = true;
this.minDistance = 0;
this.maxDistance = Infinity;
this.minZoom = 0;
this.maxZoom = Infinity;
//trackball parameters
this._tbRadius = 1;
//FSA
this._state = STATE.IDLE;
this.setCamera( camera );
if ( this.scene != null ) {
this.scene.add( this._gizmos );
}
this.domElement.style.touchAction = 'none';
this._devPxRatio = window.devicePixelRatio;
this.initializeMouseActions();
this.domElement.addEventListener( 'contextmenu', this.onContextMenu );
this.domElement.addEventListener( 'wheel', this.onWheel );
this.domElement.addEventListener( 'pointerdown', this.onPointerDown );
this.domElement.addEventListener( 'pointercancel', this.onPointerCancel );
window.addEventListener( 'resize', this.onWindowResize );
}
//listeners
onWindowResize = () => {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
this._tbRadius = this.calculateTbRadius( this.camera );
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
};
onContextMenu = ( event ) => {
if ( ! this.enabled ) {
return;
}
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == 2 ) {
//prevent only if button 2 is actually used
event.preventDefault();
break;
}
}
};
onPointerCancel = () => {
this._touchStart.splice( 0, this._touchStart.length );
this._touchCurrent.splice( 0, this._touchCurrent.length );
this._input = INPUT.NONE;
};
onPointerDown = ( event ) => {
if ( event.button == 0 && event.isPrimary ) {
this._downValid = true;
this._downEvents.push( event );
this._downStart = performance.now();
} else {
this._downValid = false;
}
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
this._touchStart.push( event );
this._touchCurrent.push( event );
switch ( this._input ) {
case INPUT.NONE:
//singleStart
this._input = INPUT.ONE_FINGER;
this.onSinglePanStart( event, 'ROTATE' );
window.addEventListener( 'pointermove', this.onPointerMove );
window.addEventListener( 'pointerup', this.onPointerUp );
break;
case INPUT.ONE_FINGER:
case INPUT.ONE_FINGER_SWITCHED:
//doubleStart
this._input = INPUT.TWO_FINGER;
this.onRotateStart();
this.onPinchStart();
this.onDoublePanStart();
break;
case INPUT.TWO_FINGER:
//multipleStart
this._input = INPUT.MULT_FINGER;
this.onTriplePanStart( event );
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.NONE ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
this._mouseOp = this.getOpFromAction( event.button, modifier );
if ( this._mouseOp != null ) {
window.addEventListener( 'pointermove', this.onPointerMove );
window.addEventListener( 'pointerup', this.onPointerUp );
//singleStart
this._input = INPUT.CURSOR;
this._button = event.button;
this.onSinglePanStart( event, this._mouseOp );
}
}
};
onPointerMove = ( event ) => {
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
switch ( this._input ) {
case INPUT.ONE_FINGER:
//singleMove
this.updateTouchEvent( event );
this.onSinglePanMove( event, STATE.ROTATE );
break;
case INPUT.ONE_FINGER_SWITCHED:
const movement = this.calculatePointersDistance( this._touchCurrent[ 0 ], event ) * this._devPxRatio;
if ( movement >= this._switchSensibility ) {
//singleMove
this._input = INPUT.ONE_FINGER;
this.updateTouchEvent( event );
this.onSinglePanStart( event, 'ROTATE' );
break;
}
break;
case INPUT.TWO_FINGER:
//rotate/pan/pinchMove
this.updateTouchEvent( event );
this.onRotateMove();
this.onPinchMove();
this.onDoublePanMove();
break;
case INPUT.MULT_FINGER:
//multMove
this.updateTouchEvent( event );
this.onTriplePanMove( event );
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.CURSOR ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
const mouseOpState = this.getOpStateFromAction( this._button, modifier );
if ( mouseOpState != null ) {
this.onSinglePanMove( event, mouseOpState );
}
}
//checkDistance
if ( this._downValid ) {
const movement = this.calculatePointersDistance( this._downEvents[ this._downEvents.length - 1 ], event ) * this._devPxRatio;
if ( movement > this._movementThreshold ) {
this._downValid = false;
}
}
};
onPointerUp = ( event ) => {
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
const nTouch = this._touchCurrent.length;
for ( let i = 0; i < nTouch; i ++ ) {
if ( this._touchCurrent[ i ].pointerId == event.pointerId ) {
this._touchCurrent.splice( i, 1 );
this._touchStart.splice( i, 1 );
break;
}
}
switch ( this._input ) {
case INPUT.ONE_FINGER:
case INPUT.ONE_FINGER_SWITCHED:
//singleEnd
window.removeEventListener( 'pointermove', this.onPointerMove );
window.removeEventListener( 'pointerup', this.onPointerUp );
this._input = INPUT.NONE;
this.onSinglePanEnd();
break;
case INPUT.TWO_FINGER:
//doubleEnd
this.onDoublePanEnd( event );
this.onPinchEnd( event );
this.onRotateEnd( event );
//switching to singleStart
this._input = INPUT.ONE_FINGER_SWITCHED;
break;
case INPUT.MULT_FINGER:
if ( this._touchCurrent.length == 0 ) {
window.removeEventListener( 'pointermove', this.onPointerMove );
window.removeEventListener( 'pointerup', this.onPointerUp );
//multCancel
this._input = INPUT.NONE;
this.onTriplePanEnd();
}
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.CURSOR ) {
window.removeEventListener( 'pointermove', this.onPointerMove );
window.removeEventListener( 'pointerup', this.onPointerUp );
this._input = INPUT.NONE;
this.onSinglePanEnd();
this._button = - 1;
}
if ( event.isPrimary ) {
if ( this._downValid ) {
const downTime = event.timeStamp - this._downEvents[ this._downEvents.length - 1 ].timeStamp;
if ( downTime <= this._maxDownTime ) {
if ( this._nclicks == 0 ) {
//first valid click detected
this._nclicks = 1;
this._clickStart = performance.now();
} else {
const clickInterval = event.timeStamp - this._clickStart;
const movement = this.calculatePointersDistance( this._downEvents[ 1 ], this._downEvents[ 0 ] ) * this._devPxRatio;
if ( clickInterval <= this._maxInterval && movement <= this._posThreshold ) {
//second valid click detected
//fire double tap and reset values
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
this.onDoubleTap( event );
} else {
//new 'first click'
this._nclicks = 1;
this._downEvents.shift();
this._clickStart = performance.now();
}
}
} else {
this._downValid = false;
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
}
} else {
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
}
}
};
onWheel = ( event ) => {
if ( this.enabled && this.enableZoom ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
const mouseOp = this.getOpFromAction( 'WHEEL', modifier );
if ( mouseOp != null ) {
event.preventDefault();
this.dispatchEvent( _startEvent );
const notchDeltaY = 125; //distance of one notch of mouse wheel
let sgn = event.deltaY / notchDeltaY;
let size = 1;
if ( sgn > 0 ) {
size = 1 / this.scaleFactor;
} else if ( sgn < 0 ) {
size = this.scaleFactor;
}
switch ( mouseOp ) {
case 'ZOOM':
this.updateTbState( STATE.SCALE, true );
if ( sgn > 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, sgn ) );
} else if ( sgn < 0 ) {
size = Math.pow( this.scaleFactor, - sgn );
}
if ( this.cursorZoom && this.enablePan ) {
let scalePoint;
if ( this.camera.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.camera, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.camera.quaternion ).multiplyScalar( 1 / this.camera.zoom ).add( this._gizmos.position );
} else if ( this.camera.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.camera, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.camera.quaternion ).add( this._gizmos.position );
}
this.applyTransformMatrix( this.scale( size, scalePoint ) );
} else {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
if ( this._grid != null ) {
this.disposeGrid();
this.drawGrid();
}
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
this.dispatchEvent( _endEvent );
break;
case 'FOV':
if ( this.camera.isPerspectiveCamera ) {
this.updateTbState( STATE.FOV, true );
//Vertigo effect
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//check for iOs shift shortcut
if ( event.deltaX != 0 ) {
sgn = event.deltaX / notchDeltaY;
size = 1;
if ( sgn > 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, sgn ) );
} else if ( sgn < 0 ) {
size = Math.pow( this.scaleFactor, - sgn );
}
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this.camera.fov * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
if ( newFov > this.maxFov ) {
newFov = this.maxFov;
} else if ( newFov < this.minFov ) {
newFov = this.minFov;
}
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._gizmos.position, false ) );
}
if ( this._grid != null ) {
this.disposeGrid();
this.drawGrid();
}
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
this.dispatchEvent( _endEvent );
break;
}
}
}
};
onSinglePanStart = ( event, operation ) => {
if ( this.enabled ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
switch ( operation ) {
case 'PAN':
if ( ! this.enablePan ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
this.dispatchEvent( _changeEvent );
}
break;
case 'ROTATE':
if ( ! this.enableRotate ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
}
this.updateTbState( STATE.ROTATE, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.camera, _center.x, _center.y, this.domElement, this._tbRadius ) );
this.activateGizmos( true );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent = performance.now();
this._angleCurrent = this._anglePrev = 0;
this._cursorPosPrev.copy( this._startCursorPosition );
this._cursorPosCurr.copy( this._cursorPosPrev );
this._wCurr = 0;
this._wPrev = this._wCurr;
}
this.dispatchEvent( _changeEvent );
break;
case 'FOV':
if ( ! this.camera.isPerspectiveCamera || ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.FOV, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
case 'ZOOM':
if ( ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.SCALE, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
}
}
};
onSinglePanMove = ( event, opState ) => {
if ( this.enabled ) {
const restart = opState != this._state;
this.setCenter( event.clientX, event.clientY );
switch ( opState ) {
case STATE.PAN:
if ( this.enablePan ) {
if ( restart ) {
//switch to pan operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
}
this.activateGizmos( false );
} else {
//continue with pan operation
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition ) );
}
}
break;
case STATE.ROTATE:
if ( this.enableRotate ) {
if ( restart ) {
//switch to rotate operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.camera, _center.x, _center.y, this.domElement, this._tbRadius ) );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( true );
} else {
//continue with rotate operation
this._currentCursorPosition.copy( this.unprojectOnTbSurface( this.camera, _center.x, _center.y, this.domElement, this._tbRadius ) );
const distance = this._startCursorPosition.distanceTo( this._currentCursorPosition );
const angle = this._startCursorPosition.angleTo( this._currentCursorPosition );
const amount = Math.max( distance / this._tbRadius, angle ); //effective rotation angle
this.applyTransformMatrix( this.rotate( this.calculateRotationAxis( this._startCursorPosition, this._currentCursorPosition ), amount ) );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent;
this._timeCurrent = performance.now();
this._anglePrev = this._angleCurrent;
this._angleCurrent = amount;
this._cursorPosPrev.copy( this._cursorPosCurr );
this._cursorPosCurr.copy( this._currentCursorPosition );
this._wPrev = this._wCurr;
this._wCurr = this.calculateAngularSpeed( this._anglePrev, this._angleCurrent, this._timePrev, this._timeCurrent );
}
}
}
break;
case STATE.SCALE:
if ( this.enableZoom ) {
if ( restart ) {
//switch to zoom operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with zoom operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState );
this.applyTransformMatrix( this.scale( size, this._v3_1 ) );
}
}
break;
case STATE.FOV:
if ( this.enableZoom && this.camera.isPerspectiveCamera ) {
if ( restart ) {
//switch to fov operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with fov operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.camera.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
}
}
break;
}
this.dispatchEvent( _changeEvent );
}
};
onSinglePanEnd = () => {
if ( this._state == STATE.ROTATE ) {
if ( ! this.enableRotate ) {
return;
}
if ( this.enableAnimations ) {
//perform rotation animation
const deltaTime = ( performance.now() - this._timeCurrent );
if ( deltaTime < 120 ) {
const w = Math.abs( ( this._wPrev + this._wCurr ) / 2 );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_ROTATE, true );
const rotationAxis = self.calculateRotationAxis( self._cursorPosPrev, self._cursorPosCurr );
self.onRotationAnim( t, rotationAxis, Math.min( w, self.wMax ) );
} );
} else {
//cursor has been standing still for over 120 ms since last movement
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else if ( this._state == STATE.PAN || this._state == STATE.IDLE ) {
this.updateTbState( STATE.IDLE, false );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.dispatchEvent( _endEvent );
};
onDoubleTap = ( event ) => {
if ( this.enabled && this.enablePan && this.scene != null ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
const hitP = this.unprojectOnObj( this.getCursorNDC( _center.x, _center.y, this.domElement ), this.camera );
if ( hitP != null && this.enableAnimations ) {
const self = this;
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this._timeStart = - 1;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_FOCUS, true );
self.onFocusAnim( t, hitP, self._cameraMatrixState, self._gizmoMatrixState );
} );
} else if ( hitP != null && ! this.enableAnimations ) {
this.updateTbState( STATE.FOCUS, true );
this.focus( hitP, this.scaleFactor );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
this.dispatchEvent( _endEvent );
};
onDoublePanStart = () => {
if ( this.enabled && this.enablePan ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.PAN, true );
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement, true ) );
this._currentCursorPosition.copy( this._startCursorPosition );
this.activateGizmos( false );
}
};
onDoublePanMove = () => {
if ( this.enabled && this.enablePan ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
if ( this._state != STATE.PAN ) {
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this._currentCursorPosition );
}
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement, true ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition, true ) );
this.dispatchEvent( _changeEvent );
}
};
onDoublePanEnd = () => {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
};
onRotateStart = () => {
if ( this.enabled && this.enableRotate ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.ZROTATE, true );
//this._startFingerRotation = event.rotation;
this._startFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
this._currentFingerRotation = this._startFingerRotation;
this.camera.getWorldDirection( this._rotationAxis ); //rotation axis
if ( ! this.enablePan && ! this.enableZoom ) {
this.activateGizmos( true );
}
}
};
onRotateMove = () => {
if ( this.enabled && this.enableRotate ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
let rotationPoint;
if ( this._state != STATE.ZROTATE ) {
this.updateTbState( STATE.ZROTATE, true );
this._startFingerRotation = this._currentFingerRotation;
}
//this._currentFingerRotation = event.rotation;
this._currentFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
if ( ! this.enablePan ) {
rotationPoint = new Vector3().setFromMatrixPosition( this._gizmoMatrixState );
} else {
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
rotationPoint = this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement ).applyQuaternion( this.camera.quaternion ).multiplyScalar( 1 / this.camera.zoom ).add( this._v3_2 );
}
const amount = MathUtils.DEG2RAD * ( this._startFingerRotation - this._currentFingerRotation );
this.applyTransformMatrix( this.zRotate( rotationPoint, amount ) );
this.dispatchEvent( _changeEvent );
}
};
onRotateEnd = () => {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _endEvent );
};
onPinchStart = () => {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
this._startFingerDistance = this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] );
this._currentFingerDistance = this._startFingerDistance;
this.activateGizmos( false );
}
};
onPinchMove = () => {
if ( this.enabled && this.enableZoom ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
const minDistance = 12; //minimum distance between fingers (in css pixels)
if ( this._state != STATE.SCALE ) {
this._startFingerDistance = this._currentFingerDistance;
this.updateTbState( STATE.SCALE, true );
}
this._currentFingerDistance = Math.max( this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] ), minDistance * this._devPxRatio );
const amount = this._currentFingerDistance / this._startFingerDistance;
let scalePoint;
if ( ! this.enablePan ) {
scalePoint = this._gizmos.position;
} else {
if ( this.camera.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement )
.applyQuaternion( this.camera.quaternion )
.multiplyScalar( 1 / this.camera.zoom )
.add( this._gizmos.position );
} else if ( this.camera.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.camera, _center.x, _center.y, this.domElement )
.applyQuaternion( this.camera.quaternion )
.add( this._gizmos.position );
}
}
this.applyTransformMatrix( this.scale( amount, scalePoint ) );
this.dispatchEvent( _changeEvent );
}
};
onPinchEnd = () => {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
};
onTriplePanStart = () => {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
}
};
onTriplePanMove = () => {
if ( this.enabled && this.enableZoom ) {
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.camera.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
this.dispatchEvent( _changeEvent );
}
};
onTriplePanEnd = () => {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
//this.dispatchEvent( _changeEvent );
};
/**
* Set _center's x/y coordinates
* @param {Number} clientX
* @param {Number} clientY
*/
setCenter = ( clientX, clientY ) => {
_center.x = clientX;
_center.y = clientY;
};
/**
* Set default mouse actions
*/
initializeMouseActions = () => {
this.setMouseAction( 'PAN', 0, 'CTRL' );
this.setMouseAction( 'PAN', 2 );
this.setMouseAction( 'ROTATE', 0 );
this.setMouseAction( 'ZOOM', 'WHEEL' );
this.setMouseAction( 'ZOOM', 1 );
this.setMouseAction( 'FOV', 'WHEEL', 'SHIFT' );
this.setMouseAction( 'FOV', 1, 'SHIFT' );
};
/**
* Compare two mouse actions
* @param {Object} action1
* @param {Object} action2
* @returns {Boolean} True if action1 and action 2 are the same mouse action, false otherwise
*/
compareMouseAction = ( action1, action2 ) => {
if ( action1.operation == action2.operation ) {
if ( action1.mouse == action2.mouse && action1.key == action2.key ) {
return true;
} else {
return false;
}
} else {
return false;
}
};
/**
* Set a new mouse action by specifying the operation to be performed and a mouse/key combination. In case of conflict, replaces the existing one
* @param {String} operation The operation to be performed ('PAN', 'ROTATE', 'ZOOM', 'FOV)
* @param {*} mouse A mouse button (0, 1, 2) or 'WHEEL' for wheel notches
* @param {*} key The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed
* @returns {Boolean} True if the mouse action has been successfully added, false otherwise
*/
setMouseAction = ( operation, mouse, key = null ) => {
const operationInput = [ 'PAN', 'ROTATE', 'ZOOM', 'FOV' ];
const mouseInput = [ 0, 1, 2, 'WHEEL' ];
const keyInput = [ 'CTRL', 'SHIFT', null ];
let state;
if ( ! operationInput.includes( operation ) || ! mouseInput.includes( mouse ) || ! keyInput.includes( key ) ) {
//invalid parameters
return false;
}
if ( mouse == 'WHEEL' ) {
if ( operation != 'ZOOM' && operation != 'FOV' ) {
//cannot associate 2D operation to 1D input
return false;
}
}
switch ( operation ) {
case 'PAN':
state = STATE.PAN;
break;
case 'ROTATE':
state = STATE.ROTATE;
break;
case 'ZOOM':
state = STATE.SCALE;
break;
case 'FOV':
state = STATE.FOV;
break;
}
const action = {
operation: operation,
mouse: mouse,
key: key,
state: state
};
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == action.mouse && this.mouseActions[ i ].key == action.key ) {
this.mouseActions.splice( i, 1, action );
return true;
}
}
this.mouseActions.push( action );
return true;
};
/**
* Remove a mouse action by specifying its mouse/key combination
* @param {*} mouse A mouse button (0, 1, 2) or 'WHEEL' for wheel notches
* @param {*} key The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed
* @returns {Boolean} True if the operation has been succesfully removed, false otherwise
*/
unsetMouseAction = ( mouse, key = null ) => {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == mouse && this.mouseActions[ i ].key == key ) {
this.mouseActions.splice( i, 1 );
return true;
}
}
return false;
};
/**
* Return the operation associated to a mouse/keyboard combination
* @param {*} mouse A mouse button (0, 1, 2) or 'WHEEL' for wheel notches
* @param {*} key The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed
* @returns The operation if it has been found, null otherwise
*/
getOpFromAction = ( mouse, key ) => {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.operation;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.operation;
}
}
}
return null;
};
/**
* Get the operation associated to mouse and key combination and returns the corresponding FSA state
* @param {Number} mouse Mouse button
* @param {String} key Keyboard modifier
* @returns The FSA state obtained from the operation associated to mouse/keyboard combination
*/
getOpStateFromAction = ( mouse, key ) => {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.state;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.state;
}
}
}
return null;
};
/**
* Calculate the angle between two pointers
* @param {PointerEvent} p1
* @param {PointerEvent} p2
* @returns {Number} The angle between two pointers in degrees
*/
getAngle = ( p1, p2 ) => {
return Math.atan2( p2.clientY - p1.clientY, p2.clientX - p1.clientX ) * 180 / Math.PI;
};
/**
* Update a PointerEvent inside current pointerevents array
* @param {PointerEvent} event
*/
updateTouchEvent = ( event ) => {
for ( let i = 0; i < this._touchCurrent.length; i ++ ) {
if ( this._touchCurrent[ i ].pointerId == event.pointerId ) {
this._touchCurrent.splice( i, 1, event );
break;
}
}
};
/**
* Apply a transformation matrix, to the camera and gizmos
* @param {Object} transformation Object containing matrices to apply to camera and gizmos
*/
applyTransformMatrix( transformation ) {
if ( transformation.camera != null ) {
this._m4_1.copy( this._cameraMatrixState ).premultiply( transformation.camera );
this._m4_1.decompose( this.camera.position, this.camera.quaternion, this.camera.scale );
this.camera.updateMatrix();
//update camera up vector
if ( this._state == STATE.ROTATE || this._state == STATE.ZROTATE || this._state == STATE.ANIMATION_ROTATE ) {
this.camera.up.copy( this._upState ).applyQuaternion( this.camera.quaternion );
}
}
if ( transformation.gizmos != null ) {
this._m4_1.copy( this._gizmoMatrixState ).premultiply( transformation.gizmos );
this._m4_1.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
}
if ( this._state == STATE.SCALE || this._state == STATE.FOCUS || this._state == STATE.ANIMATION_FOCUS ) {
this._tbRadius = this.calculateTbRadius( this.camera );
if ( this.adjustNearFar ) {
const cameraDistance = this.camera.position.distanceTo( this._gizmos.position );
const bb = new Box3();
bb.setFromObject( this._gizmos );
const sphere = new Sphere();
bb.getBoundingSphere( sphere );
const adjustedNearPosition = Math.max( this._nearPos0, sphere.radius + sphere.center.length() );
const regularNearPosition = cameraDistance - this._initialNear;
const minNearPos = Math.min( adjustedNearPosition, regularNearPosition );
this.camera.near = cameraDistance - minNearPos;
const adjustedFarPosition = Math.min( this._farPos0, - sphere.radius + sphere.center.length() );
const regularFarPosition = cameraDistance - this._initialFar;
const minFarPos = Math.min( adjustedFarPosition, regularFarPosition );
this.camera.far = cameraDistance - minFarPos;
this.camera.updateProjectionMatrix();
} else {
let update = false;
if ( this.camera.near != this._initialNear ) {
this.camera.near = this._initialNear;
update = true;
}
if ( this.camera.far != this._initialFar ) {
this.camera.far = this._initialFar;
update = true;
}
if ( update ) {
this.camera.updateProjectionMatrix();
}
}
}
}
/**
* Calculate the angular speed
* @param {Number} p0 Position at t0
* @param {Number} p1 Position at t1
* @param {Number} t0 Initial time in milliseconds
* @param {Number} t1 Ending time in milliseconds
*/
calculateAngularSpeed = ( p0, p1, t0, t1 ) => {
const s = p1 - p0;
const t = ( t1 - t0 ) / 1000;
if ( t == 0 ) {
return 0;
}
return s / t;
};
/**
* Calculate the distance between two pointers
* @param {PointerEvent} p0 The first pointer
* @param {PointerEvent} p1 The second pointer
* @returns {number} The distance between the two pointers
*/
calculatePointersDistance = ( p0, p1 ) => {
return Math.sqrt( Math.pow( p1.clientX - p0.clientX, 2 ) + Math.pow( p1.clientY - p0.clientY, 2 ) );
};
/**
* Calculate the rotation axis as the vector perpendicular between two vectors
* @param {Vector3} vec1 The first vector
* @param {Vector3} vec2 The second vector
* @returns {Vector3} The normalized rotation axis
*/
calculateRotationAxis = ( vec1, vec2 ) => {
this._rotationMatrix.extractRotation( this._cameraMatrixState );
this._quat.setFromRotationMatrix( this._rotationMatrix );
this._rotationAxis.crossVectors( vec1, vec2 ).applyQuaternion( this._quat );
return this._rotationAxis.normalize().clone();
};
/**
* Calculate the trackball radius so that gizmo's diamater will be 2/3 of the minimum side of the camera frustum
* @param {Camera} camera
* @returns {Number} The trackball radius
*/
calculateTbRadius = ( camera ) => {
const distance = camera.position.distanceTo( this._gizmos.position );
if ( camera.type == 'PerspectiveCamera' ) {
const halfFovV = MathUtils.DEG2RAD * camera.fov * 0.5; //vertical fov/2 in radians
const halfFovH = Math.atan( ( camera.aspect ) * Math.tan( halfFovV ) ); //horizontal fov/2 in radians
return Math.tan( Math.min( halfFovV, halfFovH ) ) * distance * this.radiusFactor;
} else if ( camera.type == 'OrthographicCamera' ) {
return Math.min( camera.top, camera.right ) * this.radiusFactor;
}
};
/**
* Focus operation consist of positioning the point of interest in front of the camera and a slightly zoom in
* @param {Vector3} point The point of interest
* @param {Number} size Scale factor
* @param {Number} amount Amount of operation to be completed (used for focus animations, default is complete full operation)
*/
focus = ( point, size, amount = 1 ) => {
//move center of camera (along with gizmos) towards point of interest
_offset.copy( point ).sub( this._gizmos.position ).multiplyScalar( amount );
this._translationMatrix.makeTranslation( _offset.x, _offset.y, _offset.z );
_gizmoMatrixStateTemp.copy( this._gizmoMatrixState );
this._gizmoMatrixState.premultiply( this._translationMatrix );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
_cameraMatrixStateTemp.copy( this._cameraMatrixState );
this._cameraMatrixState.premultiply( this._translationMatrix );
this._cameraMatrixState.decompose( this.camera.position, this.camera.quaternion, this.camera.scale );
//apply zoom
if ( this.enableZoom ) {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
this._gizmoMatrixState.copy( _gizmoMatrixStateTemp );
this._cameraMatrixState.copy( _cameraMatrixStateTemp );
};
/**
* Draw a grid and add it to the scene
*/
drawGrid = () => {
if ( this.scene != null ) {
const color = 0x888888;
const multiplier = 3;
let size, divisions, maxLength, tick;
if ( this.camera.isOrthographicCamera ) {
const width = this.camera.right - this.camera.left;
const height = this.camera.bottom - this.camera.top;
maxLength = Math.max( width, height );
tick = maxLength / 20;
size = maxLength / this.camera.zoom * multiplier;
divisions = size / tick * this.camera.zoom;
} else if ( this.camera.isPerspectiveCamera ) {
const distance = this.camera.position.distanceTo( this._gizmos.position );
const halfFovV = MathUtils.DEG2RAD * this.camera.fov * 0.5;
const halfFovH = Math.atan( ( this.camera.aspect ) * Math.tan( halfFovV ) );
maxLength = Math.tan( Math.max( halfFovV, halfFovH ) ) * distance * 2;
tick = maxLength / 20;
size = maxLength * multiplier;
divisions = size / tick;
}
if ( this._grid == null ) {
this._grid = new GridHelper( size, divisions, color, color );
this._grid.position.copy( this._gizmos.position );
this._gridPosition.copy( this._grid.position );
this._grid.quaternion.copy( this.camera.quaternion );
this._grid.rotateX( Math.PI * 0.5 );
this.scene.add( this._grid );
}
}
};
/**
* Remove all listeners, stop animations and clean scene
*/
dispose = () => {
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this.domElement.removeEventListener( 'pointerdown', this.onPointerDown );
this.domElement.removeEventListener( 'pointercancel', this.onPointerCancel );
this.domElement.removeEventListener( 'wheel', this.onWheel );
this.domElement.removeEventListener( 'contextmenu', this.onContextMenu );
window.removeEventListener( 'pointermove', this.onPointerMove );
window.removeEventListener( 'pointerup', this.onPointerUp );
window.removeEventListener( 'resize', this.onWindowResize );
if ( this.scene !== null ) this.scene.remove( this._gizmos );
this.disposeGrid();
};
/**
* remove the grid from the scene
*/
disposeGrid = () => {
if ( this._grid != null && this.scene != null ) {
this.scene.remove( this._grid );
this._grid = null;
}
};
/**
* Compute the easing out cubic function for ease out effect in animation
* @param {Number} t The absolute progress of the animation in the bound of 0 (beginning of the) and 1 (ending of animation)
* @returns {Number} Result of easing out cubic at time t
*/
easeOutCubic = ( t ) => {
return 1 - Math.pow( 1 - t, 3 );
};
/**
* Make rotation gizmos more or less visible
* @param {Boolean} isActive If true, make gizmos more visible
*/
activateGizmos = ( isActive ) => {
const gizmoX = this._gizmos.children[ 0 ];
const gizmoY = this._gizmos.children[ 1 ];
const gizmoZ = this._gizmos.children[ 2 ];
if ( isActive ) {
gizmoX.material.setValues( { opacity: 1 } );
gizmoY.material.setValues( { opacity: 1 } );
gizmoZ.material.setValues( { opacity: 1 } );
} else {
gizmoX.material.setValues( { opacity: 0.6 } );
gizmoY.material.setValues( { opacity: 0.6 } );
gizmoZ.material.setValues( { opacity: 0.6 } );
}
};
/**
* Calculate the cursor position in NDC
* @param {number} x Cursor horizontal coordinate within the canvas
* @param {number} y Cursor vertical coordinate within the canvas
* @param {HTMLElement} canvas The canvas where the renderer draws its output
* @returns {Vector2} Cursor normalized position inside the canvas
*/
getCursorNDC = ( cursorX, cursorY, canvas ) => {
const canvasRect = canvas.getBoundingClientRect();
this._v2_1.setX( ( ( cursorX - canvasRect.left ) / canvasRect.width ) * 2 - 1 );
this._v2_1.setY( ( ( canvasRect.bottom - cursorY ) / canvasRect.height ) * 2 - 1 );
return this._v2_1.clone();
};
/**
* Calculate the cursor position inside the canvas x/y coordinates with the origin being in the center of the canvas
* @param {Number} x Cursor horizontal coordinate within the canvas
* @param {Number} y Cursor vertical coordinate within the canvas
* @param {HTMLElement} canvas The canvas where the renderer draws its output
* @returns {Vector2} Cursor position inside the canvas
*/
getCursorPosition = ( cursorX, cursorY, canvas ) => {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v2_1.x *= ( this.camera.right - this.camera.left ) * 0.5;
this._v2_1.y *= ( this.camera.top - this.camera.bottom ) * 0.5;
return this._v2_1.clone();
};
/**
* Set the camera to be controlled
* @param {Camera} camera The virtual camera to be controlled
*/
setCamera = ( camera ) => {
camera.lookAt( this.target );
camera.updateMatrix();
//setting state
if ( camera.type == 'PerspectiveCamera' ) {
this._fov0 = camera.fov;
this._fovState = camera.fov;
}
this._cameraMatrixState0.copy( camera.matrix );
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraProjectionState.copy( camera.projectionMatrix );
this._zoom0 = camera.zoom;
this._zoomState = this._zoom0;
this._initialNear = camera.near;
this._nearPos0 = camera.position.distanceTo( this.target ) - camera.near;
this._nearPos = this._initialNear;
this._initialFar = camera.far;
this._farPos0 = camera.position.distanceTo( this.target ) - camera.far;
this._farPos = this._initialFar;
this._up0.copy( camera.up );
this._upState.copy( camera.up );
this.camera = camera;
this.camera.updateProjectionMatrix();
//making gizmos
this._tbRadius = this.calculateTbRadius( camera );
this.makeGizmos( this.target, this._tbRadius );
};
/**
* Set gizmos visibility
* @param {Boolean} value Value of gizmos visibility
*/
setGizmosVisible( value ) {
this._gizmos.visible = value;
this.dispatchEvent( _changeEvent );
}
/**
* Set gizmos radius factor and redraws gizmos
* @param {Float} value Value of radius factor
*/
setTbRadius( value ) {
this.radiusFactor = value;
this._tbRadius = this.calculateTbRadius( this.camera );
const curve = new EllipseCurve( 0, 0, this._tbRadius, this._tbRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
}
/**
* Creates the rotation gizmos matching trackball center and radius
* @param {Vector3} tbCenter The trackball center
* @param {number} tbRadius The trackball radius
*/
makeGizmos = ( tbCenter, tbRadius ) => {
const curve = new EllipseCurve( 0, 0, tbRadius, tbRadius );
const points = curve.getPoints( this._curvePts );
//geometry
const curveGeometry = new BufferGeometry().setFromPoints( points );
//material
const curveMaterialX = new LineBasicMaterial( { color: 0xff8080, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialY = new LineBasicMaterial( { color: 0x80ff80, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialZ = new LineBasicMaterial( { color: 0x8080ff, fog: false, transparent: true, opacity: 0.6 } );
//line
const gizmoX = new Line( curveGeometry, curveMaterialX );
const gizmoY = new Line( curveGeometry, curveMaterialY );
const gizmoZ = new Line( curveGeometry, curveMaterialZ );
const rotation = Math.PI * 0.5;
gizmoX.rotation.x = rotation;
gizmoY.rotation.y = rotation;
//setting state
this._gizmoMatrixState0.identity().setPosition( tbCenter );
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
if ( this.camera.zoom !== 1 ) {
//adapt gizmos size to camera zoom
const size = 1 / this.camera.zoom;
this._scaleMatrix.makeScale( size, size, size );
this._translationMatrix.makeTranslation( - tbCenter.x, - tbCenter.y, - tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix ).premultiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( tbCenter.x, tbCenter.y, tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix );
}
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
//
this._gizmos.traverse( function ( object ) {
if ( object.isLine ) {
object.geometry.dispose();
object.material.dispose();
}
} );
this._gizmos.clear();
//
this._gizmos.add( gizmoX );
this._gizmos.add( gizmoY );
this._gizmos.add( gizmoZ );
};
/**
* Perform animation for focus operation
* @param {Number} time Instant in which this function is called as performance.now()
* @param {Vector3} point Point of interest for focus operation
* @param {Matrix4} cameraMatrix Camera matrix
* @param {Matrix4} gizmoMatrix Gizmos matrix
*/
onFocusAnim = ( time, point, cameraMatrix, gizmoMatrix ) => {
if ( this._timeStart == - 1 ) {
//animation start
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_FOCUS ) {
const deltaTime = time - this._timeStart;
const animTime = deltaTime / this.focusAnimationTime;
this._gizmoMatrixState.copy( gizmoMatrix );
if ( animTime >= 1 ) {
//animation end
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, this.scaleFactor );
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
} else {
const amount = this.easeOutCubic( animTime );
const size = ( ( 1 - amount ) + ( this.scaleFactor * amount ) );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, size, amount );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onFocusAnim( t, point, cameraMatrix, gizmoMatrix.clone() );
} );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
}
};
/**
* Perform animation for rotation operation
* @param {Number} time Instant in which this function is called as performance.now()
* @param {Vector3} rotationAxis Rotation axis
* @param {number} w0 Initial angular velocity
*/
onRotationAnim = ( time, rotationAxis, w0 ) => {
if ( this._timeStart == - 1 ) {
//animation start
this._anglePrev = 0;
this._angleCurrent = 0;
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_ROTATE ) {
//w = w0 + alpha * t
const deltaTime = ( time - this._timeStart ) / 1000;
const w = w0 + ( ( - this.dampingFactor ) * deltaTime );
if ( w > 0 ) {
//tetha = 0.5 * alpha * t^2 + w0 * t + tetha0
this._angleCurrent = 0.5 * ( - this.dampingFactor ) * Math.pow( deltaTime, 2 ) + w0 * deltaTime + 0;
this.applyTransformMatrix( this.rotate( rotationAxis, this._angleCurrent ) );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onRotationAnim( t, rotationAxis, w0 );
} );
} else {
this._animationId = - 1;
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
if ( this._state != STATE.ROTATE ) {
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
}
};
/**
* Perform pan operation moving camera between two points
* @param {Vector3} p0 Initial point
* @param {Vector3} p1 Ending point
* @param {Boolean} adjust If movement should be adjusted considering camera distance (Perspective only)
*/
pan = ( p0, p1, adjust = false ) => {
const movement = p0.clone().sub( p1 );
if ( this.camera.isOrthographicCamera ) {
//adjust movement amount
movement.multiplyScalar( 1 / this.camera.zoom );
} else if ( this.camera.isPerspectiveCamera && adjust ) {
//adjust movement amount
this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ); //camera's initial position
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ); //gizmo's initial position
const distanceFactor = this._v3_1.distanceTo( this._v3_2 ) / this.camera.position.distanceTo( this._gizmos.position );
movement.multiplyScalar( 1 / distanceFactor );
}
this._v3_1.set( movement.x, movement.y, 0 ).applyQuaternion( this.camera.quaternion );
this._m4_1.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z );
this.setTransformationMatrices( this._m4_1, this._m4_1 );
return _transformation;
};
/**
* Reset trackball
*/
reset = () => {
this.camera.zoom = this._zoom0;
if ( this.camera.isPerspectiveCamera ) {
this.camera.fov = this._fov0;
}
this.camera.near = this._nearPos;
this.camera.far = this._farPos;
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraMatrixState.decompose( this.camera.position, this.camera.quaternion, this.camera.scale );
this.camera.up.copy( this._up0 );
this.camera.updateMatrix();
this.camera.updateProjectionMatrix();
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
this._gizmoMatrixState0.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.camera );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this.camera.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
};
/**
* Rotate the camera around an axis passing by trackball's center
* @param {Vector3} axis Rotation axis
* @param {number} angle Angle in radians
* @returns {Object} Object with 'camera' field containing transformation matrix resulting from the operation to be applied to the camera
*/
rotate = ( axis, angle ) => {
const point = this._gizmos.position; //rotation center
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._rotationMatrix.makeRotationAxis( axis, - angle );
//rotate camera
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1 );
return _transformation;
};
copyState = () => {
let state;
if ( this.camera.isOrthographicCamera ) {
state = JSON.stringify( { arcballState: {
cameraFar: this.camera.far,
cameraMatrix: this.camera.matrix,
cameraNear: this.camera.near,
cameraUp: this.camera.up,
cameraZoom: this.camera.zoom,
gizmoMatrix: this._gizmos.matrix
} } );
} else if ( this.camera.isPerspectiveCamera ) {
state = JSON.stringify( { arcballState: {
cameraFar: this.camera.far,
cameraFov: this.camera.fov,
cameraMatrix: this.camera.matrix,
cameraNear: this.camera.near,
cameraUp: this.camera.up,
cameraZoom: this.camera.zoom,
gizmoMatrix: this._gizmos.matrix
} } );
}
navigator.clipboard.writeText( state );
};
pasteState = () => {
const self = this;
navigator.clipboard.readText().then( function resolved( value ) {
self.setStateFromJSON( value );
} );
};
/**
* Save the current state of the control. This can later be recover with .reset
*/
saveState = () => {
this._cameraMatrixState0.copy( this.camera.matrix );
this._gizmoMatrixState0.copy( this._gizmos.matrix );
this._nearPos = this.camera.near;
this._farPos = this.camera.far;
this._zoom0 = this.camera.zoom;
this._up0.copy( this.camera.up );
if ( this.camera.isPerspectiveCamera ) {
this._fov0 = this.camera.fov;
}
};
/**
* Perform uniform scale operation around a given point
* @param {Number} size Scale factor
* @param {Vector3} point Point around which scale
* @param {Boolean} scaleGizmos If gizmos should be scaled (Perspective only)
* @returns {Object} Object with 'camera' and 'gizmo' fields containing transformation matrices resulting from the operation to be applied to the camera and gizmos
*/
scale = ( size, point, scaleGizmos = true ) => {
_scalePointTemp.copy( point );
let sizeInverse = 1 / size;
if ( this.camera.isOrthographicCamera ) {
//camera zoom
this.camera.zoom = this._zoomState;
this.camera.zoom *= size;
//check min and max zoom
if ( this.camera.zoom > this.maxZoom ) {
this.camera.zoom = this.maxZoom;
sizeInverse = this._zoomState / this.maxZoom;
} else if ( this.camera.zoom < this.minZoom ) {
this.camera.zoom = this.minZoom;
sizeInverse = this._zoomState / this.minZoom;
}
this.camera.updateProjectionMatrix();
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ); //gizmos position
//scale gizmos so they appear in the same spot having the same dimension
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._translationMatrix.makeTranslation( - this._v3_1.x, - this._v3_1.y, - this._v3_1.z );
this._m4_2.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z ).multiply( this._scaleMatrix );
this._m4_2.multiply( this._translationMatrix );
//move camera and gizmos to obtain pinch effect
_scalePointTemp.sub( this._v3_1 );
const amount = _scalePointTemp.clone().multiplyScalar( sizeInverse );
_scalePointTemp.sub( amount );
this._m4_1.makeTranslation( _scalePointTemp.x, _scalePointTemp.y, _scalePointTemp.z );
this._m4_2.premultiply( this._m4_1 );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
} else if ( this.camera.isPerspectiveCamera ) {
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
//move camera
let distance = this._v3_1.distanceTo( _scalePointTemp );
let amount = distance - ( distance * sizeInverse );
//check min and max distance
const newDistance = distance - amount;
if ( newDistance < this.minDistance ) {
sizeInverse = this.minDistance / distance;
amount = distance - ( distance * sizeInverse );
} else if ( newDistance > this.maxDistance ) {
sizeInverse = this.maxDistance / distance;
amount = distance - ( distance * sizeInverse );
}
_offset.copy( _scalePointTemp ).sub( this._v3_1 ).normalize().multiplyScalar( amount );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
if ( scaleGizmos ) {
//scale gizmos so they appear in the same spot having the same dimension
const pos = this._v3_2;
distance = pos.distanceTo( _scalePointTemp );
amount = distance - ( distance * sizeInverse );
_offset.copy( _scalePointTemp ).sub( this._v3_2 ).normalize().multiplyScalar( amount );
this._translationMatrix.makeTranslation( pos.x, pos.y, pos.z );
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._m4_2.makeTranslation( _offset.x, _offset.y, _offset.z ).multiply( this._translationMatrix );
this._m4_2.multiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( - pos.x, - pos.y, - pos.z );
this._m4_2.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
} else {
this.setTransformationMatrices( this._m4_1 );
}
return _transformation;
}
};
/**
* Set camera fov
* @param {Number} value fov to be setted
*/
setFov = ( value ) => {
if ( this.camera.isPerspectiveCamera ) {
this.camera.fov = MathUtils.clamp( value, this.minFov, this.maxFov );
this.camera.updateProjectionMatrix();
}
};
/**
* Set values in transformation object
* @param {Matrix4} camera Transformation to be applied to the camera
* @param {Matrix4} gizmos Transformation to be applied to gizmos
*/
setTransformationMatrices( camera = null, gizmos = null ) {
if ( camera != null ) {
if ( _transformation.camera != null ) {
_transformation.camera.copy( camera );
} else {
_transformation.camera = camera.clone();
}
} else {
_transformation.camera = null;
}
if ( gizmos != null ) {
if ( _transformation.gizmos != null ) {
_transformation.gizmos.copy( gizmos );
} else {
_transformation.gizmos = gizmos.clone();
}
} else {
_transformation.gizmos = null;
}
}
/**
* Rotate camera around its direction axis passing by a given point by a given angle
* @param {Vector3} point The point where the rotation axis is passing trough
* @param {Number} angle Angle in radians
* @returns The computed transormation matix
*/
zRotate = ( point, angle ) => {
this._rotationMatrix.makeRotationAxis( this._rotationAxis, angle );
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ).sub( point ); //vector from rotation center to gizmos position
this._v3_2.copy( this._v3_1 ).applyAxisAngle( this._rotationAxis, angle ); //apply rotation
this._v3_2.sub( this._v3_1 );
this._m4_2.makeTranslation( this._v3_2.x, this._v3_2.y, this._v3_2.z );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
};
getRaycaster() {
return _raycaster;
}
/**
* Unproject the cursor on the 3D object surface
* @param {Vector2} cursor Cursor coordinates in NDC
* @param {Camera} camera Virtual camera
* @returns {Vector3} The point of intersection with the model, if exist, null otherwise
*/
unprojectOnObj = ( cursor, camera ) => {
const raycaster = this.getRaycaster();
raycaster.near = camera.near;
raycaster.far = camera.far;
raycaster.setFromCamera( cursor, camera );
const intersect = raycaster.intersectObjects( this.scene.children, true );
for ( let i = 0; i < intersect.length; i ++ ) {
if ( intersect[ i ].object.uuid != this._gizmos.uuid && intersect[ i ].face != null ) {
return intersect[ i ].point.clone();
}
}
return null;
};
/**
* Unproject the cursor on the trackball surface
* @param {Camera} camera The virtual camera
* @param {Number} cursorX Cursor horizontal coordinate on screen
* @param {Number} cursorY Cursor vertical coordinate on screen
* @param {HTMLElement} canvas The canvas where the renderer draws its output
* @param {number} tbRadius The trackball radius
* @returns {Vector3} The unprojected point on the trackball surface
*/
unprojectOnTbSurface = ( camera, cursorX, cursorY, canvas, tbRadius ) => {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
const x2 = Math.pow( this._v2_1.x, 2 );
const y2 = Math.pow( this._v2_1.y, 2 );
const r2 = Math.pow( this._tbRadius, 2 );
if ( x2 + y2 <= r2 * 0.5 ) {
//intersection with sphere
this._v3_1.setZ( Math.sqrt( r2 - ( x2 + y2 ) ) );
} else {
//intersection with hyperboloid
this._v3_1.setZ( ( r2 * 0.5 ) / ( Math.sqrt( x2 + y2 ) ) );
}
return this._v3_1;
} else if ( camera.type == 'PerspectiveCamera' ) {
//unproject cursor on the near plane
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
const cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
const radius2 = Math.pow( tbRadius, 2 );
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( this._v3_1.x, this._v3_1.y, tbRadius );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
/*
* calculate intersection point between unprojected ray and trackball surface
*|y = m * x + q
*|x^2 + y^2 = r^2
*
* (m^2 + 1) * x^2 + (2 * m * q) * x + q^2 - r^2 = 0
*/
let a = Math.pow( m, 2 ) + 1;
let b = 2 * m * q;
let c = Math.pow( q, 2 ) - radius2;
let delta = Math.pow( b, 2 ) - ( 4 * a * c );
if ( delta >= 0 ) {
//intersection with sphere
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const angle = MathUtils.RAD2DEG * this._v2_1.angle();
if ( angle >= 45 ) {
//if angle between intersection point and X' axis is >= 45°, return that point
//otherwise, calculate intersection point with hyperboloid
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
//intersection with hyperboloid
/*
*|y = m * x + q
*|y = (1 / x) * (r^2 / 2)
*
* m * x^2 + q * x - r^2 / 2 = 0
*/
a = m;
b = q;
c = - radius2 * 0.5;
delta = Math.pow( b, 2 ) - ( 4 * a * c );
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
};
/**
* Unproject the cursor on the plane passing through the center of the trackball orthogonal to the camera
* @param {Camera} camera The virtual camera
* @param {Number} cursorX Cursor horizontal coordinate on screen
* @param {Number} cursorY Cursor vertical coordinate on screen
* @param {HTMLElement} canvas The canvas where the renderer draws its output
* @param {Boolean} initialDistance If initial distance between camera and gizmos should be used for calculations instead of current (Perspective only)
* @returns {Vector3} The unprojected point on the trackball plane
*/
unprojectOnTbPlane = ( camera, cursorX, cursorY, canvas, initialDistance = false ) => {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
return this._v3_1.clone();
} else if ( camera.type == 'PerspectiveCamera' ) {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
//unproject cursor on the near plane
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
let cameraGizmoDistance;
if ( initialDistance ) {
cameraGizmoDistance = this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ).distanceTo( this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ) );
} else {
cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
}
/*
* calculate intersection point between unprojected ray and the plane
*|y = mx + q
*|y = 0
*
* x = -q/m
*/
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( 0, 0, 0 );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
const x = - q / m;
const rayLength = Math.sqrt( Math.pow( q, 2 ) + Math.pow( x, 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z = 0;
return rayDir;
}
};
/**
* Update camera and gizmos state
*/
updateMatrixState = () => {
//update camera and gizmos state
this._cameraMatrixState.copy( this.camera.matrix );
this._gizmoMatrixState.copy( this._gizmos.matrix );
if ( this.camera.isOrthographicCamera ) {
this._cameraProjectionState.copy( this.camera.projectionMatrix );
this.camera.updateProjectionMatrix();
this._zoomState = this.camera.zoom;
} else if ( this.camera.isPerspectiveCamera ) {
this._fovState = this.camera.fov;
}
};
/**
* Update the trackball FSA
* @param {STATE} newState New state of the FSA
* @param {Boolean} updateMatrices If matriices state should be updated
*/
updateTbState = ( newState, updateMatrices ) => {
this._state = newState;
if ( updateMatrices ) {
this.updateMatrixState();
}
};
update = () => {
const EPS = 0.000001;
if ( this.target.equals( this._currentTarget ) === false ) {
this._gizmos.position.copy( this.target ); //for correct radius calculation
this._tbRadius = this.calculateTbRadius( this.camera );
this.makeGizmos( this.target, this._tbRadius );
this._currentTarget.copy( this.target );
}
//check min/max parameters
if ( this.camera.isOrthographicCamera ) {
//check zoom
if ( this.camera.zoom > this.maxZoom || this.camera.zoom < this.minZoom ) {
const newZoom = MathUtils.clamp( this.camera.zoom, this.minZoom, this.maxZoom );
this.applyTransformMatrix( this.scale( newZoom / this.camera.zoom, this._gizmos.position, true ) );
}
} else if ( this.camera.isPerspectiveCamera ) {
//check distance
const distance = this.camera.position.distanceTo( this._gizmos.position );
if ( distance > this.maxDistance + EPS || distance < this.minDistance - EPS ) {
const newDistance = MathUtils.clamp( distance, this.minDistance, this.maxDistance );
this.applyTransformMatrix( this.scale( newDistance / distance, this._gizmos.position ) );
this.updateMatrixState();
}
//check fov
if ( this.camera.fov < this.minFov || this.camera.fov > this.maxFov ) {
this.camera.fov = MathUtils.clamp( this.camera.fov, this.minFov, this.maxFov );
this.camera.updateProjectionMatrix();
}
const oldRadius = this._tbRadius;
this._tbRadius = this.calculateTbRadius( this.camera );
if ( oldRadius < this._tbRadius - EPS || oldRadius > this._tbRadius + EPS ) {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
}
}
this.camera.lookAt( this._gizmos.position );
};
setStateFromJSON = ( json ) => {
const state = JSON.parse( json );
if ( state.arcballState != undefined ) {
this._cameraMatrixState.fromArray( state.arcballState.cameraMatrix.elements );
this._cameraMatrixState.decompose( this.camera.position, this.camera.quaternion, this.camera.scale );
this.camera.up.copy( state.arcballState.cameraUp );
this.camera.near = state.arcballState.cameraNear;
this.camera.far = state.arcballState.cameraFar;
this.camera.zoom = state.arcballState.cameraZoom;
if ( this.camera.isPerspectiveCamera ) {
this.camera.fov = state.arcballState.cameraFov;
}
this._gizmoMatrixState.fromArray( state.arcballState.gizmoMatrix.elements );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.camera.updateMatrix();
this.camera.updateProjectionMatrix();
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.camera );
const gizmoTmp = new Matrix4().copy( this._gizmoMatrixState0 );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this._gizmoMatrixState0.copy( gizmoTmp );
this.camera.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
};
}
export { ArcballControls };