You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

460 lines
14 KiB

import {
Vector2
} from 'three';
/**
* WebGL port of Subpixel Morphological Antialiasing (SMAA) v2.8
* Preset: SMAA 1x Medium (with color edge detection)
* https://github.com/iryoku/smaa/releases/tag/v2.8
*/
const SMAAEdgesShader = {
defines: {
'SMAA_THRESHOLD': '0.1'
},
uniforms: {
'tDiffuse': { value: null },
'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }
},
vertexShader: /* glsl */`
uniform vec2 resolution;
varying vec2 vUv;
varying vec4 vOffset[ 3 ];
void SMAAEdgeDetectionVS( vec2 texcoord ) {
vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0, 1.0 ); // WebGL port note: Changed sign in W component
vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( 1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component
vOffset[ 2 ] = texcoord.xyxy + resolution.xyxy * vec4( -2.0, 0.0, 0.0, 2.0 ); // WebGL port note: Changed sign in W component
}
void main() {
vUv = uv;
SMAAEdgeDetectionVS( vUv );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform sampler2D tDiffuse;
varying vec2 vUv;
varying vec4 vOffset[ 3 ];
vec4 SMAAColorEdgeDetectionPS( vec2 texcoord, vec4 offset[3], sampler2D colorTex ) {
vec2 threshold = vec2( SMAA_THRESHOLD, SMAA_THRESHOLD );
// Calculate color deltas:
vec4 delta;
vec3 C = texture2D( colorTex, texcoord ).rgb;
vec3 Cleft = texture2D( colorTex, offset[0].xy ).rgb;
vec3 t = abs( C - Cleft );
delta.x = max( max( t.r, t.g ), t.b );
vec3 Ctop = texture2D( colorTex, offset[0].zw ).rgb;
t = abs( C - Ctop );
delta.y = max( max( t.r, t.g ), t.b );
// We do the usual threshold:
vec2 edges = step( threshold, delta.xy );
// Then discard if there is no edge:
if ( dot( edges, vec2( 1.0, 1.0 ) ) == 0.0 )
discard;
// Calculate right and bottom deltas:
vec3 Cright = texture2D( colorTex, offset[1].xy ).rgb;
t = abs( C - Cright );
delta.z = max( max( t.r, t.g ), t.b );
vec3 Cbottom = texture2D( colorTex, offset[1].zw ).rgb;
t = abs( C - Cbottom );
delta.w = max( max( t.r, t.g ), t.b );
// Calculate the maximum delta in the direct neighborhood:
float maxDelta = max( max( max( delta.x, delta.y ), delta.z ), delta.w );
// Calculate left-left and top-top deltas:
vec3 Cleftleft = texture2D( colorTex, offset[2].xy ).rgb;
t = abs( C - Cleftleft );
delta.z = max( max( t.r, t.g ), t.b );
vec3 Ctoptop = texture2D( colorTex, offset[2].zw ).rgb;
t = abs( C - Ctoptop );
delta.w = max( max( t.r, t.g ), t.b );
// Calculate the final maximum delta:
maxDelta = max( max( maxDelta, delta.z ), delta.w );
// Local contrast adaptation in action:
edges.xy *= step( 0.5 * maxDelta, delta.xy );
return vec4( edges, 0.0, 0.0 );
}
void main() {
gl_FragColor = SMAAColorEdgeDetectionPS( vUv, vOffset, tDiffuse );
}`
};
const SMAAWeightsShader = {
defines: {
'SMAA_MAX_SEARCH_STEPS': '8',
'SMAA_AREATEX_MAX_DISTANCE': '16',
'SMAA_AREATEX_PIXEL_SIZE': '( 1.0 / vec2( 160.0, 560.0 ) )',
'SMAA_AREATEX_SUBTEX_SIZE': '( 1.0 / 7.0 )'
},
uniforms: {
'tDiffuse': { value: null },
'tArea': { value: null },
'tSearch': { value: null },
'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }
},
vertexShader: /* glsl */`
uniform vec2 resolution;
varying vec2 vUv;
varying vec4 vOffset[ 3 ];
varying vec2 vPixcoord;
void SMAABlendingWeightCalculationVS( vec2 texcoord ) {
vPixcoord = texcoord / resolution;
// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.25, 0.125, 1.25, 0.125 ); // WebGL port note: Changed sign in Y and W components
vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.125, 0.25, -0.125, -1.25 ); // WebGL port note: Changed sign in Y and W components
// And these for the searches, they indicate the ends of the loops:
vOffset[ 2 ] = vec4( vOffset[ 0 ].xz, vOffset[ 1 ].yw ) + vec4( -2.0, 2.0, -2.0, 2.0 ) * resolution.xxyy * float( SMAA_MAX_SEARCH_STEPS );
}
void main() {
vUv = uv;
SMAABlendingWeightCalculationVS( vUv );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
#define SMAASampleLevelZeroOffset( tex, coord, offset ) texture2D( tex, coord + float( offset ) * resolution, 0.0 )
uniform sampler2D tDiffuse;
uniform sampler2D tArea;
uniform sampler2D tSearch;
uniform vec2 resolution;
varying vec2 vUv;
varying vec4 vOffset[3];
varying vec2 vPixcoord;
#if __VERSION__ == 100
vec2 round( vec2 x ) {
return sign( x ) * floor( abs( x ) + 0.5 );
}
#endif
float SMAASearchLength( sampler2D searchTex, vec2 e, float bias, float scale ) {
// Not required if searchTex accesses are set to point:
// float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0);
// e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
// e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
e.r = bias + e.r * scale;
return 255.0 * texture2D( searchTex, e, 0.0 ).r;
}
float SMAASearchXLeft( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
/**
* @PSEUDO_GATHER4
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
* sample between edge, thus fetching four edges in a row.
* Sampling with different offsets in each direction allows to disambiguate
* which edges are active from the four fetched ones.
*/
vec2 e = vec2( 0.0, 1.0 );
for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
e = texture2D( edgesTex, texcoord, 0.0 ).rg;
texcoord -= vec2( 2.0, 0.0 ) * resolution;
if ( ! ( texcoord.x > end && e.g > 0.8281 && e.r == 0.0 ) ) break;
}
// We correct the previous (-0.25, -0.125) offset we applied:
texcoord.x += 0.25 * resolution.x;
// The searches are bias by 1, so adjust the coords accordingly:
texcoord.x += resolution.x;
// Disambiguate the length added by the last step:
texcoord.x += 2.0 * resolution.x; // Undo last step
texcoord.x -= resolution.x * SMAASearchLength(searchTex, e, 0.0, 0.5);
return texcoord.x;
}
float SMAASearchXRight( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
vec2 e = vec2( 0.0, 1.0 );
for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
e = texture2D( edgesTex, texcoord, 0.0 ).rg;
texcoord += vec2( 2.0, 0.0 ) * resolution;
if ( ! ( texcoord.x < end && e.g > 0.8281 && e.r == 0.0 ) ) break;
}
texcoord.x -= 0.25 * resolution.x;
texcoord.x -= resolution.x;
texcoord.x -= 2.0 * resolution.x;
texcoord.x += resolution.x * SMAASearchLength( searchTex, e, 0.5, 0.5 );
return texcoord.x;
}
float SMAASearchYUp( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
vec2 e = vec2( 1.0, 0.0 );
for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
e = texture2D( edgesTex, texcoord, 0.0 ).rg;
texcoord += vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign
if ( ! ( texcoord.y > end && e.r > 0.8281 && e.g == 0.0 ) ) break;
}
texcoord.y -= 0.25 * resolution.y; // WebGL port note: Changed sign
texcoord.y -= resolution.y; // WebGL port note: Changed sign
texcoord.y -= 2.0 * resolution.y; // WebGL port note: Changed sign
texcoord.y += resolution.y * SMAASearchLength( searchTex, e.gr, 0.0, 0.5 ); // WebGL port note: Changed sign
return texcoord.y;
}
float SMAASearchYDown( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) {
vec2 e = vec2( 1.0, 0.0 );
for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for
e = texture2D( edgesTex, texcoord, 0.0 ).rg;
texcoord -= vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign
if ( ! ( texcoord.y < end && e.r > 0.8281 && e.g == 0.0 ) ) break;
}
texcoord.y += 0.25 * resolution.y; // WebGL port note: Changed sign
texcoord.y += resolution.y; // WebGL port note: Changed sign
texcoord.y += 2.0 * resolution.y; // WebGL port note: Changed sign
texcoord.y -= resolution.y * SMAASearchLength( searchTex, e.gr, 0.5, 0.5 ); // WebGL port note: Changed sign
return texcoord.y;
}
vec2 SMAAArea( sampler2D areaTex, vec2 dist, float e1, float e2, float offset ) {
// Rounding prevents precision errors of bilinear filtering:
vec2 texcoord = float( SMAA_AREATEX_MAX_DISTANCE ) * round( 4.0 * vec2( e1, e2 ) ) + dist;
// We do a scale and bias for mapping to texel space:
texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + ( 0.5 * SMAA_AREATEX_PIXEL_SIZE );
// Move to proper place, according to the subpixel offset:
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
return texture2D( areaTex, texcoord, 0.0 ).rg;
}
vec4 SMAABlendingWeightCalculationPS( vec2 texcoord, vec2 pixcoord, vec4 offset[ 3 ], sampler2D edgesTex, sampler2D areaTex, sampler2D searchTex, ivec4 subsampleIndices ) {
vec4 weights = vec4( 0.0, 0.0, 0.0, 0.0 );
vec2 e = texture2D( edgesTex, texcoord ).rg;
if ( e.g > 0.0 ) { // Edge at north
vec2 d;
// Find the distance to the left:
vec2 coords;
coords.x = SMAASearchXLeft( edgesTex, searchTex, offset[ 0 ].xy, offset[ 2 ].x );
coords.y = offset[ 1 ].y; // offset[1].y = texcoord.y - 0.25 * resolution.y (@CROSSING_OFFSET)
d.x = coords.x;
// Now fetch the left crossing edges, two at a time using bilinear
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
// discern what value each edge has:
float e1 = texture2D( edgesTex, coords, 0.0 ).r;
// Find the distance to the right:
coords.x = SMAASearchXRight( edgesTex, searchTex, offset[ 0 ].zw, offset[ 2 ].y );
d.y = coords.x;
// We want the distances to be in pixel units (doing this here allow to
// better interleave arithmetic and memory accesses):
d = d / resolution.x - pixcoord.x;
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
vec2 sqrt_d = sqrt( abs( d ) );
// Fetch the right crossing edges:
coords.y -= 1.0 * resolution.y; // WebGL port note: Added
float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 1, 0 ) ).r;
// Ok, we know how this pattern looks like, now it is time for getting
// the actual area:
weights.rg = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.y ) );
}
if ( e.r > 0.0 ) { // Edge at west
vec2 d;
// Find the distance to the top:
vec2 coords;
coords.y = SMAASearchYUp( edgesTex, searchTex, offset[ 1 ].xy, offset[ 2 ].z );
coords.x = offset[ 0 ].x; // offset[1].x = texcoord.x - 0.25 * resolution.x;
d.x = coords.y;
// Fetch the top crossing edges:
float e1 = texture2D( edgesTex, coords, 0.0 ).g;
// Find the distance to the bottom:
coords.y = SMAASearchYDown( edgesTex, searchTex, offset[ 1 ].zw, offset[ 2 ].w );
d.y = coords.y;
// We want the distances to be in pixel units:
d = d / resolution.y - pixcoord.y;
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
vec2 sqrt_d = sqrt( abs( d ) );
// Fetch the bottom crossing edges:
coords.y -= 1.0 * resolution.y; // WebGL port note: Added
float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 0, 1 ) ).g;
// Get the area for this direction:
weights.ba = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.x ) );
}
return weights;
}
void main() {
gl_FragColor = SMAABlendingWeightCalculationPS( vUv, vPixcoord, vOffset, tDiffuse, tArea, tSearch, ivec4( 0.0 ) );
}`
};
const SMAABlendShader = {
uniforms: {
'tDiffuse': { value: null },
'tColor': { value: null },
'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) }
},
vertexShader: /* glsl */`
uniform vec2 resolution;
varying vec2 vUv;
varying vec4 vOffset[ 2 ];
void SMAANeighborhoodBlendingVS( vec2 texcoord ) {
vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0, 1.0 ); // WebGL port note: Changed sign in W component
vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( 1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component
}
void main() {
vUv = uv;
SMAANeighborhoodBlendingVS( vUv );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform sampler2D tDiffuse;
uniform sampler2D tColor;
uniform vec2 resolution;
varying vec2 vUv;
varying vec4 vOffset[ 2 ];
vec4 SMAANeighborhoodBlendingPS( vec2 texcoord, vec4 offset[ 2 ], sampler2D colorTex, sampler2D blendTex ) {
// Fetch the blending weights for current pixel:
vec4 a;
a.xz = texture2D( blendTex, texcoord ).xz;
a.y = texture2D( blendTex, offset[ 1 ].zw ).g;
a.w = texture2D( blendTex, offset[ 1 ].xy ).a;
// Is there any blending weight with a value greater than 0.0?
if ( dot(a, vec4( 1.0, 1.0, 1.0, 1.0 )) < 1e-5 ) {
return texture2D( colorTex, texcoord, 0.0 );
} else {
// Up to 4 lines can be crossing a pixel (one through each edge). We
// favor blending by choosing the line with the maximum weight for each
// direction:
vec2 offset;
offset.x = a.a > a.b ? a.a : -a.b; // left vs. right
offset.y = a.g > a.r ? -a.g : a.r; // top vs. bottom // WebGL port note: Changed signs
// Then we go in the direction that has the maximum weight:
if ( abs( offset.x ) > abs( offset.y )) { // horizontal vs. vertical
offset.y = 0.0;
} else {
offset.x = 0.0;
}
// Fetch the opposite color and lerp by hand:
vec4 C = texture2D( colorTex, texcoord, 0.0 );
texcoord += sign( offset ) * resolution;
vec4 Cop = texture2D( colorTex, texcoord, 0.0 );
float s = abs( offset.x ) > abs( offset.y ) ? abs( offset.x ) : abs( offset.y );
// WebGL port note: Added gamma correction
C.xyz = pow(C.xyz, vec3(2.2));
Cop.xyz = pow(Cop.xyz, vec3(2.2));
vec4 mixed = mix(C, Cop, s);
mixed.xyz = pow(mixed.xyz, vec3(1.0 / 2.2));
return mixed;
}
}
void main() {
gl_FragColor = SMAANeighborhoodBlendingPS( vUv, vOffset, tColor, tDiffuse );
}`
};
export { SMAAEdgesShader, SMAAWeightsShader, SMAABlendShader };