You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

212 lines
7.9 KiB

<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="utf-8" />
<base href="../../../" />
<script src="page.js"></script>
<link type="text/css" rel="stylesheet" href="page.css" />
</head>
<body>
<h1>光线投射[name]</h1>
<p class="desc">
这个类用于进行[link:https://en.wikipedia.org/wiki/Ray_casting raycasting](光线投射)。
光线投射用于进行鼠标拾取(在三维空间中计算出鼠标移过了什么物体)。
</p>
<h2>代码示例</h2>
<code>
const raycaster = new THREE.Raycaster();
const pointer = new THREE.Vector2();
function onPointerMove( event ) {
// 将鼠标位置归一化为设备坐标。x 和 y 方向的取值范围是 (-1 to +1)
pointer.x = ( event.clientX / window.innerWidth ) * 2 - 1;
pointer.y = - ( event.clientY / window.innerHeight ) * 2 + 1;
}
function render() {
// 通过摄像机和鼠标位置更新射线
raycaster.setFromCamera( pointer, camera );
// 计算物体和射线的焦点
const intersects = raycaster.intersectObjects( scene.children );
for ( let i = 0; i < intersects.length; i ++ ) {
intersects[ i ].object.material.color.set( 0xff0000 );
}
renderer.render( scene, camera );
}
window.addEventListener( 'pointermove', onPointerMove );
window.requestAnimationFrame(render);
</code>
<h2>例子</h2>
<p>
[example:webgl_interactive_cubes Raycasting to a Mesh]<br />
[example:webgl_interactive_cubes_ortho Raycasting to a Mesh in using an OrthographicCamera]<br />
[example:webgl_interactive_buffergeometry Raycasting to a Mesh with BufferGeometry]<br />
[example:webgl_instancing_raycast Raycasting to a InstancedMesh]<br />
[example:webgl_interactive_lines Raycasting to a Line]<br />
[example:webgl_interactive_raycasting_points Raycasting to Points]<br />
[example:webgl_geometry_terrain_raycast Terrain raycasting]<br />
[example:webgl_interactive_voxelpainter Raycasting to paint voxels]<br />
[example:webgl_raycaster_texture Raycast to a Texture]
</p>
<p>
</p>
<h2>构造器</h2>
<h3>[name]( [param:Vector3 origin], [param:Vector3 direction], [param:Float near], [param:Float far] )</h3>
<p>
[page:Vector3 origin] —— 光线投射的原点向量。<br />
[page:Vector3 direction] —— 向射线提供方向的方向向量,应当被标准化。<br />
[page:Float near] —— 返回的所有结果比near远。near不能为负值,其默认值为0。<br />
[page:Float far] —— 返回的所有结果都比far近。far不能小于near,其默认值为Infinity(正无穷。)</p>
<p>
这将创建一个新的raycaster对象。<br />
</p>
<h2>属性</h2>
<h3>[property:Float far]</h3>
<p>
raycaster的远距离因数(投射远点)。这个值表明哪些对象可以基于该距离而被raycaster所丢弃。
这个值不应当为负,并且应当比near属性大。
</p>
<h3>[property:Float near]</h3>
<p>
raycaster的近距离因数(投射近点)。这个值表明哪些对象可以基于该距离而被raycaster所丢弃。
这个值不应当为负,并且应当比far属性小。
</p>
<h3>[property:Camera camera]</h3>
<p>
The camera to use when raycasting against view-dependent objects such as billboarded objects like [page:Sprites]. This field
can be set manually or is set when calling "setFromCamera".
Defaults to null.
</p>
<h3>[property:Layers layers]</h3>
<p>
Used by [name] to selectively ignore 3D objects when performing intersection tests. The following code example ensures that
only 3D objects on layer *1* will be honored by the instance of [name].
<code>
raycaster.layers.set( 1 );
object.layers.enable( 1 );
</code>
</p>
<h3>[property:Object params]</h3>
<p>
具有以下属性的对象:
<code>
{
Mesh: {},
Line: { threshold: 1 },
LOD: {},
Points: { threshold: 1 },
Sprite: {}
}
</code>
Where threshold is the precision of the raycaster when intersecting objects, in world units.
</p>
<h3>[property:Ray ray]</h3>
<p>用于进行光线投射的[Page:Ray](射线)。</p>
<h2>方法</h2>
<h3>[method:undefined set]( [param:Vector3 origin], [param:Vector3 direction] )</h3>
<p>
[page:Vector3 origin] —— 光线投射的原点向量。<br />
[page:Vector3 direction] —— 为光线提供方向的标准化方向向量。
</p>
<p>
使用一个新的原点和方向来更新射线。
</p>
<h3>[method:undefined setFromCamera]( [param:Vector2 coords], [param:Camera camera] )</h3>
<p>
[page:Vector2 coords] —— 在标准化设备坐标中鼠标的二维坐标 —— X分量与Y分量应当在-1到1之间。<br />
[page:Camera camera] —— 射线所来源的摄像机。
</p>
<p>
使用一个新的原点和方向来更新射线。
</p>
<h3>[method:Array intersectObject]( [param:Object3D object], [param:Boolean recursive], [param:Array optionalTarget] )</h3>
<p>
[page:Object3D object] —— 检查与射线相交的物体。<br />
[page:Boolean recursive] —— 若为true,则同时也会检查所有的后代。否则将只会检查对象本身。默认值为true。<br />
[page:Array optionalTarget] — (可选)设置结果的目标数组。如果不设置这个值,则一个新的[page:Array]会被实例化;如果设置了这个值,则在每次调用之前必须清空这个数组(例如:array.length = 0;)。
</p>
<p>
检测所有在射线与物体之间,包括或不包括后代的相交部分。返回结果时,相交部分将按距离进行排序,最近的位于第一个。<br>
该方法返回一个包含有交叉部分的数组:
</p>
<code>
[ { distance, point, face, faceIndex, object }, ... ]
</code>
<p>
[page:Float distance] —— 射线投射原点和相交部分之间的距离。<br />
[page:Vector3 point] —— 相交部分的点(世界坐标)<br />
[page:Object face] —— 相交的面<br />
[page:Integer faceIndex] —— 相交的面的索引<br />
[page:Object3D object] —— 相交的物体<br />
[page:Vector2 uv] —— 相交部分的点的UV坐标。<br />
[page:Vector2 uv2] —— Second set of U,V coordinates at point of intersection<br />
[page:Integer instanceId] – The index number of the instance where the ray intersects the InstancedMesh
</p>
<p>
当计算这条射线是否和物体相交的时候,*Raycaster*将传入的对象委托给[page:Object3D.raycast raycast]方法。
这将可以让[page:Mesh mesh]对于光线投射的响应不同于[page:Line lines]和[page:Points pointclouds]。
</p>
<p>
<strong>请注意</strong>:对于网格来说,面必须朝向射线的原点,以便其能够被检测到。
用于交互的射线穿过面的背侧时,将不会被检测到。如果需要对物体中面的两侧进行光线投射,
你需要将[page:Mesh.material material]中的[page:Material.side side]属性设置为*THREE.DoubleSide*。
</p>
<h3>[method:Array intersectObjects]( [param:Array objects], [param:Boolean recursive], [param:Array optionalTarget] )</h3>
<p>
[page:Array objects] —— 检测和射线相交的一组物体。<br />
[page:Boolean recursive] —— 若为true,则同时也会检测所有物体的后代。否则将只会检测对象本身的相交部分。默认值为true。<br />
[page:Array optionalTarget] —— (可选)设置结果的目标数组。如果不设置这个值,则一个新的[page:Array]会被实例化;如果设置了这个值,则在每次调用之前必须清空这个数组(例如:array.length = 0;)。
</p>
<p>
检测所有在射线与这些物体之间,包括或不包括后代的相交部分。返回结果时,相交部分将按距离进行排序,最近的位于第一个),相交部分和[page:.intersectObject]所返回的格式是相同的。
</p>
<h2>源代码</h2>
<p>
[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
</p>
</body>
</html>