import { Vector2 } from 'three'; /** * WebGL port of Subpixel Morphological Antialiasing (SMAA) v2.8 * Preset: SMAA 1x Medium (with color edge detection) * https://github.com/iryoku/smaa/releases/tag/v2.8 */ const SMAAEdgesShader = { defines: { 'SMAA_THRESHOLD': '0.1' }, uniforms: { 'tDiffuse': { value: null }, 'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) } }, vertexShader: /* glsl */` uniform vec2 resolution; varying vec2 vUv; varying vec4 vOffset[ 3 ]; void SMAAEdgeDetectionVS( vec2 texcoord ) { vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0, 1.0 ); // WebGL port note: Changed sign in W component vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( 1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component vOffset[ 2 ] = texcoord.xyxy + resolution.xyxy * vec4( -2.0, 0.0, 0.0, 2.0 ); // WebGL port note: Changed sign in W component } void main() { vUv = uv; SMAAEdgeDetectionVS( vUv ); gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: /* glsl */` uniform sampler2D tDiffuse; varying vec2 vUv; varying vec4 vOffset[ 3 ]; vec4 SMAAColorEdgeDetectionPS( vec2 texcoord, vec4 offset[3], sampler2D colorTex ) { vec2 threshold = vec2( SMAA_THRESHOLD, SMAA_THRESHOLD ); // Calculate color deltas: vec4 delta; vec3 C = texture2D( colorTex, texcoord ).rgb; vec3 Cleft = texture2D( colorTex, offset[0].xy ).rgb; vec3 t = abs( C - Cleft ); delta.x = max( max( t.r, t.g ), t.b ); vec3 Ctop = texture2D( colorTex, offset[0].zw ).rgb; t = abs( C - Ctop ); delta.y = max( max( t.r, t.g ), t.b ); // We do the usual threshold: vec2 edges = step( threshold, delta.xy ); // Then discard if there is no edge: if ( dot( edges, vec2( 1.0, 1.0 ) ) == 0.0 ) discard; // Calculate right and bottom deltas: vec3 Cright = texture2D( colorTex, offset[1].xy ).rgb; t = abs( C - Cright ); delta.z = max( max( t.r, t.g ), t.b ); vec3 Cbottom = texture2D( colorTex, offset[1].zw ).rgb; t = abs( C - Cbottom ); delta.w = max( max( t.r, t.g ), t.b ); // Calculate the maximum delta in the direct neighborhood: float maxDelta = max( max( max( delta.x, delta.y ), delta.z ), delta.w ); // Calculate left-left and top-top deltas: vec3 Cleftleft = texture2D( colorTex, offset[2].xy ).rgb; t = abs( C - Cleftleft ); delta.z = max( max( t.r, t.g ), t.b ); vec3 Ctoptop = texture2D( colorTex, offset[2].zw ).rgb; t = abs( C - Ctoptop ); delta.w = max( max( t.r, t.g ), t.b ); // Calculate the final maximum delta: maxDelta = max( max( maxDelta, delta.z ), delta.w ); // Local contrast adaptation in action: edges.xy *= step( 0.5 * maxDelta, delta.xy ); return vec4( edges, 0.0, 0.0 ); } void main() { gl_FragColor = SMAAColorEdgeDetectionPS( vUv, vOffset, tDiffuse ); }` }; const SMAAWeightsShader = { defines: { 'SMAA_MAX_SEARCH_STEPS': '8', 'SMAA_AREATEX_MAX_DISTANCE': '16', 'SMAA_AREATEX_PIXEL_SIZE': '( 1.0 / vec2( 160.0, 560.0 ) )', 'SMAA_AREATEX_SUBTEX_SIZE': '( 1.0 / 7.0 )' }, uniforms: { 'tDiffuse': { value: null }, 'tArea': { value: null }, 'tSearch': { value: null }, 'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) } }, vertexShader: /* glsl */` uniform vec2 resolution; varying vec2 vUv; varying vec4 vOffset[ 3 ]; varying vec2 vPixcoord; void SMAABlendingWeightCalculationVS( vec2 texcoord ) { vPixcoord = texcoord / resolution; // We will use these offsets for the searches later on (see @PSEUDO_GATHER4): vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.25, 0.125, 1.25, 0.125 ); // WebGL port note: Changed sign in Y and W components vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( -0.125, 0.25, -0.125, -1.25 ); // WebGL port note: Changed sign in Y and W components // And these for the searches, they indicate the ends of the loops: vOffset[ 2 ] = vec4( vOffset[ 0 ].xz, vOffset[ 1 ].yw ) + vec4( -2.0, 2.0, -2.0, 2.0 ) * resolution.xxyy * float( SMAA_MAX_SEARCH_STEPS ); } void main() { vUv = uv; SMAABlendingWeightCalculationVS( vUv ); gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: /* glsl */` #define SMAASampleLevelZeroOffset( tex, coord, offset ) texture2D( tex, coord + float( offset ) * resolution, 0.0 ) uniform sampler2D tDiffuse; uniform sampler2D tArea; uniform sampler2D tSearch; uniform vec2 resolution; varying vec2 vUv; varying vec4 vOffset[3]; varying vec2 vPixcoord; #if __VERSION__ == 100 vec2 round( vec2 x ) { return sign( x ) * floor( abs( x ) + 0.5 ); } #endif float SMAASearchLength( sampler2D searchTex, vec2 e, float bias, float scale ) { // Not required if searchTex accesses are set to point: // float2 SEARCH_TEX_PIXEL_SIZE = 1.0 / float2(66.0, 33.0); // e = float2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE + // e * float2(scale, 1.0) * float2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE; e.r = bias + e.r * scale; return 255.0 * texture2D( searchTex, e, 0.0 ).r; } float SMAASearchXLeft( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) { /** * @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ vec2 e = vec2( 0.0, 1.0 ); for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for e = texture2D( edgesTex, texcoord, 0.0 ).rg; texcoord -= vec2( 2.0, 0.0 ) * resolution; if ( ! ( texcoord.x > end && e.g > 0.8281 && e.r == 0.0 ) ) break; } // We correct the previous (-0.25, -0.125) offset we applied: texcoord.x += 0.25 * resolution.x; // The searches are bias by 1, so adjust the coords accordingly: texcoord.x += resolution.x; // Disambiguate the length added by the last step: texcoord.x += 2.0 * resolution.x; // Undo last step texcoord.x -= resolution.x * SMAASearchLength(searchTex, e, 0.0, 0.5); return texcoord.x; } float SMAASearchXRight( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) { vec2 e = vec2( 0.0, 1.0 ); for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for e = texture2D( edgesTex, texcoord, 0.0 ).rg; texcoord += vec2( 2.0, 0.0 ) * resolution; if ( ! ( texcoord.x < end && e.g > 0.8281 && e.r == 0.0 ) ) break; } texcoord.x -= 0.25 * resolution.x; texcoord.x -= resolution.x; texcoord.x -= 2.0 * resolution.x; texcoord.x += resolution.x * SMAASearchLength( searchTex, e, 0.5, 0.5 ); return texcoord.x; } float SMAASearchYUp( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) { vec2 e = vec2( 1.0, 0.0 ); for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for e = texture2D( edgesTex, texcoord, 0.0 ).rg; texcoord += vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign if ( ! ( texcoord.y > end && e.r > 0.8281 && e.g == 0.0 ) ) break; } texcoord.y -= 0.25 * resolution.y; // WebGL port note: Changed sign texcoord.y -= resolution.y; // WebGL port note: Changed sign texcoord.y -= 2.0 * resolution.y; // WebGL port note: Changed sign texcoord.y += resolution.y * SMAASearchLength( searchTex, e.gr, 0.0, 0.5 ); // WebGL port note: Changed sign return texcoord.y; } float SMAASearchYDown( sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end ) { vec2 e = vec2( 1.0, 0.0 ); for ( int i = 0; i < SMAA_MAX_SEARCH_STEPS; i ++ ) { // WebGL port note: Changed while to for e = texture2D( edgesTex, texcoord, 0.0 ).rg; texcoord -= vec2( 0.0, 2.0 ) * resolution; // WebGL port note: Changed sign if ( ! ( texcoord.y < end && e.r > 0.8281 && e.g == 0.0 ) ) break; } texcoord.y += 0.25 * resolution.y; // WebGL port note: Changed sign texcoord.y += resolution.y; // WebGL port note: Changed sign texcoord.y += 2.0 * resolution.y; // WebGL port note: Changed sign texcoord.y -= resolution.y * SMAASearchLength( searchTex, e.gr, 0.5, 0.5 ); // WebGL port note: Changed sign return texcoord.y; } vec2 SMAAArea( sampler2D areaTex, vec2 dist, float e1, float e2, float offset ) { // Rounding prevents precision errors of bilinear filtering: vec2 texcoord = float( SMAA_AREATEX_MAX_DISTANCE ) * round( 4.0 * vec2( e1, e2 ) ) + dist; // We do a scale and bias for mapping to texel space: texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + ( 0.5 * SMAA_AREATEX_PIXEL_SIZE ); // Move to proper place, according to the subpixel offset: texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; return texture2D( areaTex, texcoord, 0.0 ).rg; } vec4 SMAABlendingWeightCalculationPS( vec2 texcoord, vec2 pixcoord, vec4 offset[ 3 ], sampler2D edgesTex, sampler2D areaTex, sampler2D searchTex, ivec4 subsampleIndices ) { vec4 weights = vec4( 0.0, 0.0, 0.0, 0.0 ); vec2 e = texture2D( edgesTex, texcoord ).rg; if ( e.g > 0.0 ) { // Edge at north vec2 d; // Find the distance to the left: vec2 coords; coords.x = SMAASearchXLeft( edgesTex, searchTex, offset[ 0 ].xy, offset[ 2 ].x ); coords.y = offset[ 1 ].y; // offset[1].y = texcoord.y - 0.25 * resolution.y (@CROSSING_OFFSET) d.x = coords.x; // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to // discern what value each edge has: float e1 = texture2D( edgesTex, coords, 0.0 ).r; // Find the distance to the right: coords.x = SMAASearchXRight( edgesTex, searchTex, offset[ 0 ].zw, offset[ 2 ].y ); d.y = coords.x; // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): d = d / resolution.x - pixcoord.x; // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt( abs( d ) ); // Fetch the right crossing edges: coords.y -= 1.0 * resolution.y; // WebGL port note: Added float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 1, 0 ) ).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.y ) ); } if ( e.r > 0.0 ) { // Edge at west vec2 d; // Find the distance to the top: vec2 coords; coords.y = SMAASearchYUp( edgesTex, searchTex, offset[ 1 ].xy, offset[ 2 ].z ); coords.x = offset[ 0 ].x; // offset[1].x = texcoord.x - 0.25 * resolution.x; d.x = coords.y; // Fetch the top crossing edges: float e1 = texture2D( edgesTex, coords, 0.0 ).g; // Find the distance to the bottom: coords.y = SMAASearchYDown( edgesTex, searchTex, offset[ 1 ].zw, offset[ 2 ].w ); d.y = coords.y; // We want the distances to be in pixel units: d = d / resolution.y - pixcoord.y; // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt( abs( d ) ); // Fetch the bottom crossing edges: coords.y -= 1.0 * resolution.y; // WebGL port note: Added float e2 = SMAASampleLevelZeroOffset( edgesTex, coords, ivec2( 0, 1 ) ).g; // Get the area for this direction: weights.ba = SMAAArea( areaTex, sqrt_d, e1, e2, float( subsampleIndices.x ) ); } return weights; } void main() { gl_FragColor = SMAABlendingWeightCalculationPS( vUv, vPixcoord, vOffset, tDiffuse, tArea, tSearch, ivec4( 0.0 ) ); }` }; const SMAABlendShader = { uniforms: { 'tDiffuse': { value: null }, 'tColor': { value: null }, 'resolution': { value: new Vector2( 1 / 1024, 1 / 512 ) } }, vertexShader: /* glsl */` uniform vec2 resolution; varying vec2 vUv; varying vec4 vOffset[ 2 ]; void SMAANeighborhoodBlendingVS( vec2 texcoord ) { vOffset[ 0 ] = texcoord.xyxy + resolution.xyxy * vec4( -1.0, 0.0, 0.0, 1.0 ); // WebGL port note: Changed sign in W component vOffset[ 1 ] = texcoord.xyxy + resolution.xyxy * vec4( 1.0, 0.0, 0.0, -1.0 ); // WebGL port note: Changed sign in W component } void main() { vUv = uv; SMAANeighborhoodBlendingVS( vUv ); gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: /* glsl */` uniform sampler2D tDiffuse; uniform sampler2D tColor; uniform vec2 resolution; varying vec2 vUv; varying vec4 vOffset[ 2 ]; vec4 SMAANeighborhoodBlendingPS( vec2 texcoord, vec4 offset[ 2 ], sampler2D colorTex, sampler2D blendTex ) { // Fetch the blending weights for current pixel: vec4 a; a.xz = texture2D( blendTex, texcoord ).xz; a.y = texture2D( blendTex, offset[ 1 ].zw ).g; a.w = texture2D( blendTex, offset[ 1 ].xy ).a; // Is there any blending weight with a value greater than 0.0? if ( dot(a, vec4( 1.0, 1.0, 1.0, 1.0 )) < 1e-5 ) { return texture2D( colorTex, texcoord, 0.0 ); } else { // Up to 4 lines can be crossing a pixel (one through each edge). We // favor blending by choosing the line with the maximum weight for each // direction: vec2 offset; offset.x = a.a > a.b ? a.a : -a.b; // left vs. right offset.y = a.g > a.r ? -a.g : a.r; // top vs. bottom // WebGL port note: Changed signs // Then we go in the direction that has the maximum weight: if ( abs( offset.x ) > abs( offset.y )) { // horizontal vs. vertical offset.y = 0.0; } else { offset.x = 0.0; } // Fetch the opposite color and lerp by hand: vec4 C = texture2D( colorTex, texcoord, 0.0 ); texcoord += sign( offset ) * resolution; vec4 Cop = texture2D( colorTex, texcoord, 0.0 ); float s = abs( offset.x ) > abs( offset.y ) ? abs( offset.x ) : abs( offset.y ); // WebGL port note: Added gamma correction C.xyz = pow(C.xyz, vec3(2.2)); Cop.xyz = pow(Cop.xyz, vec3(2.2)); vec4 mixed = mix(C, Cop, s); mixed.xyz = pow(mixed.xyz, vec3(1.0 / 2.2)); return mixed; } } void main() { gl_FragColor = SMAANeighborhoodBlendingPS( vUv, vOffset, tColor, tDiffuse ); }` }; export { SMAAEdgesShader, SMAAWeightsShader, SMAABlendShader };