import { Curve, Vector3, Vector4 } from 'three'; import * as NURBSUtils from '../curves/NURBSUtils.js'; /** * NURBS curve object * * Derives from Curve, overriding getPoint and getTangent. * * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight. * **/ class NURBSCurve extends Curve { constructor( degree, knots /* array of reals */, controlPoints /* array of Vector(2|3|4) */, startKnot /* index in knots */, endKnot /* index in knots */ ) { super(); this.degree = degree; this.knots = knots; this.controlPoints = []; // Used by periodic NURBS to remove hidden spans this.startKnot = startKnot || 0; this.endKnot = endKnot || ( this.knots.length - 1 ); for ( let i = 0; i < controlPoints.length; ++ i ) { // ensure Vector4 for control points const point = controlPoints[ i ]; this.controlPoints[ i ] = new Vector4( point.x, point.y, point.z, point.w ); } } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u // following results in (wx, wy, wz, w) homogeneous point const hpoint = NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u ); if ( hpoint.w !== 1.0 ) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1) hpoint.divideScalar( hpoint.w ); } return point.set( hpoint.x, hpoint.y, hpoint.z ); } getTangent( t, optionalTarget = new Vector3() ) { const tangent = optionalTarget; const u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] ); const ders = NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 ); tangent.copy( ders[ 1 ] ).normalize(); return tangent; } } export { NURBSCurve };