/* global QUnit */ import { BufferGeometry } from '../../../../src/core/BufferGeometry.js'; import { BufferAttribute, Uint16BufferAttribute, Uint32BufferAttribute } from '../../../../src/core/BufferAttribute.js'; import { Vector3 } from '../../../../src/math/Vector3.js'; import { Matrix4 } from '../../../../src/math/Matrix4.js'; import { Quaternion } from '../../../../src/math/Quaternion.js'; import { Sphere } from '../../../../src/math/Sphere.js'; import { x, y, z } from '../math/Constants.tests.js'; var DegToRad = Math.PI / 180; function bufferAttributeEquals( a, b, tolerance ) { tolerance = tolerance || 0.0001; if ( a.count !== b.count || a.itemSize !== b.itemSize ) { return false; } for ( var i = 0, il = a.count * a.itemSize; i < il; i ++ ) { var delta = a[ i ] - b[ i ]; if ( delta > tolerance ) { return false; } } return true; } function getBBForVertices( vertices ) { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( vertices ), 3 ) ); geometry.computeBoundingBox(); return geometry.boundingBox; } function getBSForVertices( vertices ) { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( vertices ), 3 ) ); geometry.computeBoundingSphere(); return geometry.boundingSphere; } function getNormalsForVertices( vertices, assert ) { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( vertices ), 3 ) ); geometry.computeVertexNormals(); assert.ok( geometry.attributes.normal !== undefined, 'normal attribute was created' ); return geometry.attributes.normal.array; } export default QUnit.module( 'Core', () => { QUnit.module( 'BufferGeometry', () => { // INHERITANCE QUnit.todo( 'Extending', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); // INSTANCING QUnit.todo( 'Instancing', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); // PUBLIC STUFF QUnit.todo( 'isBufferGeometry', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); QUnit.test( 'setIndex/getIndex', ( assert ) => { var a = new BufferGeometry(); var uint16 = [ 1, 2, 3 ]; var uint32 = [ 65535, 65536, 65537 ]; var str = 'foo'; a.setIndex( uint16 ); assert.ok( a.getIndex() instanceof Uint16BufferAttribute, 'Index has the right type' ); assert.deepEqual( a.getIndex().array, new Uint16Array( uint16 ), 'Small index gets stored correctly' ); a.setIndex( uint32 ); assert.ok( a.getIndex() instanceof Uint32BufferAttribute, 'Index has the right type' ); assert.deepEqual( a.getIndex().array, new Uint32Array( uint32 ), 'Large index gets stored correctly' ); a.setIndex( str ); assert.strictEqual( a.getIndex(), str, 'Weird index gets stored correctly' ); } ); QUnit.todo( 'getAttribute', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); QUnit.test( 'set / delete Attribute', ( assert ) => { var geometry = new BufferGeometry(); var attributeName = 'position'; assert.ok( geometry.attributes[ attributeName ] === undefined, 'no attribute defined' ); geometry.setAttribute( attributeName, new BufferAttribute( new Float32Array( [ 1, 2, 3 ], 1 ) ) ); assert.ok( geometry.attributes[ attributeName ] !== undefined, 'attribute is defined' ); geometry.deleteAttribute( attributeName ); assert.ok( geometry.attributes[ attributeName ] === undefined, 'no attribute defined' ); } ); QUnit.test( 'addGroup', ( assert ) => { var a = new BufferGeometry(); var expected = [ { start: 0, count: 1, materialIndex: 0 }, { start: 1, count: 2, materialIndex: 2 } ]; a.addGroup( 0, 1, 0 ); a.addGroup( 1, 2, 2 ); assert.deepEqual( a.groups, expected, 'Check groups were stored correctly and in order' ); a.clearGroups(); assert.strictEqual( a.groups.length, 0, 'Check groups were deleted correctly' ); } ); QUnit.todo( 'clearGroups', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); QUnit.test( 'setDrawRange', ( assert ) => { var a = new BufferGeometry(); a.setDrawRange( 1.0, 7 ); assert.deepEqual( a.drawRange, { start: 1, count: 7 }, 'Check draw range was stored correctly' ); } ); QUnit.test( 'applyMatrix4', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( 6 ), 3 ) ); var matrix = new Matrix4().set( 1, 0, 0, 1.5, 0, 1, 0, - 2, 0, 0, 1, 3, 0, 0, 0, 1 ); geometry.applyMatrix4( matrix ); var position = geometry.attributes.position.array; var m = matrix.elements; assert.ok( position[ 0 ] === m[ 12 ] && position[ 1 ] === m[ 13 ] && position[ 2 ] === m[ 14 ], 'position was extracted from matrix' ); assert.ok( position[ 3 ] === m[ 12 ] && position[ 4 ] === m[ 13 ] && position[ 5 ] === m[ 14 ], 'position was extracted from matrix twice' ); assert.ok( geometry.attributes.position.version === 1, 'version was increased during update' ); } ); QUnit.test( 'applyQuaternion', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); var q = new Quaternion( 0.5, 0.5, 0.5, 0.5 ); geometry.applyQuaternion( q ); var pos = geometry.attributes.position.array; // geometry was rotated around the (1, 1, 1) axis. assert.ok( pos[ 0 ] === 3 && pos[ 1 ] === 1 && pos[ 2 ] === 2 && pos[ 3 ] === 6 && pos[ 4 ] === 4 && pos[ 5 ] === 5, 'vertices were rotated properly' ); } ); QUnit.test( 'rotateX/Y/Z', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); var pos = geometry.attributes.position.array; geometry.rotateX( 180 * DegToRad ); // object was rotated around x so all items should be flipped but the x ones assert.ok( pos[ 0 ] === 1 && pos[ 1 ] === - 2 && pos[ 2 ] === - 3 && pos[ 3 ] === 4 && pos[ 4 ] === - 5 && pos[ 5 ] === - 6, 'vertices were rotated around x by 180 degrees' ); geometry.rotateY( 180 * DegToRad ); // vertices were rotated around y so all items should be flipped again but the y ones assert.ok( pos[ 0 ] === - 1 && pos[ 1 ] === - 2 && pos[ 2 ] === 3 && pos[ 3 ] === - 4 && pos[ 4 ] === - 5 && pos[ 5 ] === 6, 'vertices were rotated around y by 180 degrees' ); geometry.rotateZ( 180 * DegToRad ); // vertices were rotated around z so all items should be flipped again but the z ones assert.ok( pos[ 0 ] === 1 && pos[ 1 ] === 2 && pos[ 2 ] === 3 && pos[ 3 ] === 4 && pos[ 4 ] === 5 && pos[ 5 ] === 6, 'vertices were rotated around z by 180 degrees' ); } ); QUnit.test( 'translate', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); var pos = geometry.attributes.position.array; geometry.translate( 10, 20, 30 ); assert.ok( pos[ 0 ] === 11 && pos[ 1 ] === 22 && pos[ 2 ] === 33 && pos[ 3 ] === 14 && pos[ 4 ] === 25 && pos[ 5 ] === 36, 'vertices were translated' ); } ); QUnit.test( 'scale', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( [ - 1, - 1, - 1, 2, 2, 2 ] ), 3 ) ); var pos = geometry.attributes.position.array; geometry.scale( 1, 2, 3 ); assert.ok( pos[ 0 ] === - 1 && pos[ 1 ] === - 2 && pos[ 2 ] === - 3 && pos[ 3 ] === 2 && pos[ 4 ] === 4 && pos[ 5 ] === 6, 'vertices were scaled' ); } ); QUnit.test( 'lookAt', ( assert ) => { var a = new BufferGeometry(); var vertices = new Float32Array( [ - 1.0, - 1.0, 1.0, 1.0, - 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, - 1.0, 1.0, 1.0, - 1.0, - 1.0, 1.0 ] ); a.setAttribute( 'position', new BufferAttribute( vertices, 3 ) ); var sqrt = Math.sqrt( 2 ); var expected = new Float32Array( [ 1, 0, - sqrt, - 1, 0, - sqrt, - 1, sqrt, 0, - 1, sqrt, 0, 1, sqrt, 0, 1, 0, - sqrt ] ); a.lookAt( new Vector3( 0, 1, - 1 ) ); assert.ok( bufferAttributeEquals( a.attributes.position.array, expected ), 'Rotation is correct' ); } ); QUnit.test( 'center', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new BufferAttribute( new Float32Array( [ - 1, - 1, - 1, 1, 1, 1, 4, 4, 4 ] ), 3 ) ); geometry.center(); var pos = geometry.attributes.position.array; // the boundingBox should go from (-1, -1, -1) to (4, 4, 4) so it has a size of (5, 5, 5) // after centering it the vertices should be placed between (-2.5, -2.5, -2.5) and (2.5, 2.5, 2.5) assert.ok( pos[ 0 ] === - 2.5 && pos[ 1 ] === - 2.5 && pos[ 2 ] === - 2.5 && pos[ 3 ] === - 0.5 && pos[ 4 ] === - 0.5 && pos[ 5 ] === - 0.5 && pos[ 6 ] === 2.5 && pos[ 7 ] === 2.5 && pos[ 8 ] === 2.5, 'vertices were replaced by boundingBox dimensions' ); } ); QUnit.test( 'computeBoundingBox', ( assert ) => { var bb = getBBForVertices( [ - 1, - 2, - 3, 13, - 2, - 3.5, - 1, - 20, 0, - 4, 5, 6 ] ); assert.ok( bb.min.x === - 4 && bb.min.y === - 20 && bb.min.z === - 3.5, 'min values are set correctly' ); assert.ok( bb.max.x === 13 && bb.max.y === 5 && bb.max.z === 6, 'max values are set correctly' ); var bb = getBBForVertices( [ - 1, - 1, - 1 ] ); assert.ok( bb.min.x === bb.max.x && bb.min.y === bb.max.y && bb.min.z === bb.max.z, 'since there is only one vertex, max and min are equal' ); assert.ok( bb.min.x === - 1 && bb.min.y === - 1 && bb.min.z === - 1, 'since there is only one vertex, min and max are this vertex' ); } ); QUnit.test( 'computeBoundingSphere', ( assert ) => { var bs = getBSForVertices( [ - 10, 0, 0, 10, 0, 0 ] ); assert.ok( bs.radius === 10, 'radius is equal to deltaMinMax / 2' ); assert.ok( bs.center.x === 0 && bs.center.y === 0 && bs.center.y === 0, 'bounding sphere is at ( 0, 0, 0 )' ); var bs = getBSForVertices( [ - 5, 11, - 3, 5, - 11, 3 ] ); var radius = new Vector3( 5, 11, 3 ).length(); assert.ok( bs.radius === radius, 'radius is equal to directionLength' ); assert.ok( bs.center.x === 0 && bs.center.y === 0 && bs.center.y === 0, 'bounding sphere is at ( 0, 0, 0 )' ); } ); QUnit.test( 'computeVertexNormals', ( assert ) => { // get normals for a counter clockwise created triangle var normals = getNormalsForVertices( [ - 1, 0, 0, 1, 0, 0, 0, 1, 0 ], assert ); assert.ok( normals[ 0 ] === 0 && normals[ 1 ] === 0 && normals[ 2 ] === 1, 'first normal is pointing to screen since the the triangle was created counter clockwise' ); assert.ok( normals[ 3 ] === 0 && normals[ 4 ] === 0 && normals[ 5 ] === 1, 'second normal is pointing to screen since the the triangle was created counter clockwise' ); assert.ok( normals[ 6 ] === 0 && normals[ 7 ] === 0 && normals[ 8 ] === 1, 'third normal is pointing to screen since the the triangle was created counter clockwise' ); // get normals for a clockwise created triangle var normals = getNormalsForVertices( [ 1, 0, 0, - 1, 0, 0, 0, 1, 0 ], assert ); assert.ok( normals[ 0 ] === 0 && normals[ 1 ] === 0 && normals[ 2 ] === - 1, 'first normal is pointing to screen since the the triangle was created clockwise' ); assert.ok( normals[ 3 ] === 0 && normals[ 4 ] === 0 && normals[ 5 ] === - 1, 'second normal is pointing to screen since the the triangle was created clockwise' ); assert.ok( normals[ 6 ] === 0 && normals[ 7 ] === 0 && normals[ 8 ] === - 1, 'third normal is pointing to screen since the the triangle was created clockwise' ); var normals = getNormalsForVertices( [ 0, 0, 1, 0, 0, - 1, 1, 1, 0 ], assert ); // the triangle is rotated by 45 degrees to the right so the normals of the three vertices // should point to (1, -1, 0).normalized(). The simplest solution is to check against a normalized // vector (1, -1, 0) but you will get calculation errors because of floating calculations so another // valid technique is to create a vector which stands in 90 degrees to the normals and calculate the // dot product which is the cos of the angle between them. This should be < floating calculation error // which can be taken from Number.EPSILON var direction = new Vector3( 1, 1, 0 ).normalize(); // a vector which should have 90 degrees difference to normals var difference = direction.dot( new Vector3( normals[ 0 ], normals[ 1 ], normals[ 2 ] ) ); assert.ok( difference < Number.EPSILON, 'normal is equal to reference vector' ); // get normals for a line should be NAN because you need min a triangle to calculate normals var normals = getNormalsForVertices( [ 1, 0, 0, - 1, 0, 0 ], assert ); for ( var i = 0; i < normals.length; i ++ ) { assert.ok( ! normals[ i ], 'normals can\'t be calculated which is good' ); } } ); QUnit.test( 'computeVertexNormals (indexed)', ( assert ) => { var sqrt = 0.5 * Math.sqrt( 2 ); var normal = new BufferAttribute( new Float32Array( [ - 1, 0, 0, - 1, 0, 0, - 1, 0, 0, sqrt, sqrt, 0, sqrt, sqrt, 0, sqrt, sqrt, 0, - 1, 0, 0 ] ), 3 ); var position = new BufferAttribute( new Float32Array( [ 0.5, 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, - 0.5, 0.5, - 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, - 0.5 ] ), 3 ); var index = new BufferAttribute( new Uint16Array( [ 0, 2, 1, 2, 3, 1, 4, 6, 5, 6, 7, 5 ] ), 1 ); var a = new BufferGeometry(); a.setAttribute( 'position', position ); a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( 'normal' ) ), 'Regular geometry: first computed normals are correct' ); // a second time to see if the existing normals get properly deleted a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( 'normal' ) ), 'Regular geometry: second computed normals are correct' ); // indexed geometry var a = new BufferGeometry(); a.setAttribute( 'position', position ); a.setIndex( index ); a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( 'normal' ) ), 'Indexed geometry: computed normals are correct' ); } ); QUnit.todo( 'normalizeNormals', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); QUnit.test( 'toNonIndexed', ( assert ) => { var geometry = new BufferGeometry(); var vertices = new Float32Array( [ 0.5, 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5 ] ); var index = new BufferAttribute( new Uint16Array( [ 0, 2, 1, 2, 3, 1 ] ) ); var expected = new Float32Array( [ 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, 0.5, 0.5, - 0.5 ] ); geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) ); geometry.setIndex( index ); var nonIndexed = geometry.toNonIndexed(); assert.deepEqual( nonIndexed.getAttribute( 'position' ).array, expected, 'Expected vertices' ); } ); QUnit.test( 'toJSON', ( assert ) => { var index = new BufferAttribute( new Uint16Array( [ 0, 1, 2, 3 ] ), 1 ); var attribute1 = new BufferAttribute( new Uint16Array( [ 1, 3, 5, 7 ] ), 1 ); attribute1.name = 'attribute1'; var a = new BufferGeometry(); a.name = 'JSONQUnit.test'; // a.parameters = { "placeholder": 0 }; a.setAttribute( 'attribute1', attribute1 ); a.setIndex( index ); a.addGroup( 0, 1, 2 ); a.boundingSphere = new Sphere( new Vector3( x, y, z ), 0.5 ); var j = a.toJSON(); var gold = { 'metadata': { 'version': 4.5, 'type': 'BufferGeometry', 'generator': 'BufferGeometry.toJSON' }, 'uuid': a.uuid, 'type': 'BufferGeometry', 'name': 'JSONQUnit.test', 'data': { 'attributes': { 'attribute1': { 'itemSize': 1, 'type': 'Uint16Array', 'array': [ 1, 3, 5, 7 ], 'normalized': false, 'name': 'attribute1' } }, 'index': { 'type': 'Uint16Array', 'array': [ 0, 1, 2, 3 ] }, 'groups': [ { 'start': 0, 'count': 1, 'materialIndex': 2 } ], 'boundingSphere': { 'center': [ 2, 3, 4 ], 'radius': 0.5 } } }; assert.deepEqual( j, gold, 'Generated JSON is as expected' ); // add morphAttributes a.morphAttributes.attribute1 = []; a.morphAttributes.attribute1.push( attribute1.clone() ); j = a.toJSON(); gold.data.morphAttributes = { 'attribute1': [ { 'itemSize': 1, 'type': 'Uint16Array', 'array': [ 1, 3, 5, 7 ], 'normalized': false, 'name': 'attribute1' } ] }; gold.data.morphTargetsRelative = false; assert.deepEqual( j, gold, 'Generated JSON with morphAttributes is as expected' ); } ); QUnit.test( 'clone', ( assert ) => { var a = new BufferGeometry(); a.setAttribute( 'attribute1', new BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); a.setAttribute( 'attribute2', new BufferAttribute( new Float32Array( [ 0, 1, 3, 5, 6 ] ), 1 ) ); a.addGroup( 0, 1, 2 ); a.computeBoundingBox(); a.computeBoundingSphere(); a.setDrawRange( 0, 1 ); var b = a.clone(); assert.notEqual( a, b, 'A new object was created' ); assert.notEqual( a.id, b.id, 'New object has a different GUID' ); assert.strictEqual( Object.keys( a.attributes ).count, Object.keys( b.attributes ).count, 'Both objects have the same amount of attributes' ); assert.ok( bufferAttributeEquals( a.getAttribute( 'attribute1' ), b.getAttribute( 'attribute1' ) ), 'First attributes buffer is identical' ); assert.ok( bufferAttributeEquals( a.getAttribute( 'attribute2' ), b.getAttribute( 'attribute2' ) ), 'Second attributes buffer is identical' ); assert.deepEqual( a.groups, b.groups, 'Groups are identical' ); assert.ok( a.boundingBox.equals( b.boundingBox ), 'BoundingBoxes are equal' ); assert.ok( a.boundingSphere.equals( b.boundingSphere ), 'BoundingSpheres are equal' ); assert.strictEqual( a.drawRange.start, b.drawRange.start, 'DrawRange start is identical' ); assert.strictEqual( a.drawRange.count, b.drawRange.count, 'DrawRange count is identical' ); } ); QUnit.test( 'copy', ( assert ) => { var geometry = new BufferGeometry(); geometry.setAttribute( 'attrName', new BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); geometry.setAttribute( 'attrName2', new BufferAttribute( new Float32Array( [ 0, 1, 3, 5, 6 ] ), 1 ) ); var copy = new BufferGeometry().copy( geometry ); assert.ok( copy !== geometry && geometry.id !== copy.id, 'new object was created' ); Object.keys( geometry.attributes ).forEach( function ( key ) { var attribute = geometry.attributes[ key ]; assert.ok( attribute !== undefined, 'all attributes where copied' ); for ( var i = 0; i < attribute.array.length; i ++ ) { assert.ok( attribute.array[ i ] === copy.attributes[ key ].array[ i ], 'values of the attribute are equal' ); } } ); } ); QUnit.todo( 'dispose', ( assert ) => { assert.ok( false, 'everything\'s gonna be alright' ); } ); } ); } );