import { AmbientLight, AnimationClip, Bone, BufferGeometry, ClampToEdgeWrapping, Color, DirectionalLight, DoubleSide, Euler, FileLoader, Float32BufferAttribute, FrontSide, Group, Line, LineBasicMaterial, LineSegments, Loader, LoaderUtils, MathUtils, Matrix4, Mesh, MeshBasicMaterial, MeshLambertMaterial, MeshPhongMaterial, OrthographicCamera, PerspectiveCamera, PointLight, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, Scene, Skeleton, SkinnedMesh, SpotLight, TextureLoader, Vector2, Vector3, VectorKeyframeTrack, sRGBEncoding } from 'three'; import { TGALoader } from '../loaders/TGALoader.js'; class ColladaLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( text, path ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( text, path ) { function getElementsByTagName( xml, name ) { // Non recursive xml.getElementsByTagName() ... const array = []; const childNodes = xml.childNodes; for ( let i = 0, l = childNodes.length; i < l; i ++ ) { const child = childNodes[ i ]; if ( child.nodeName === name ) { array.push( child ); } } return array; } function parseStrings( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parts[ i ]; } return array; } function parseFloats( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parseFloat( parts[ i ] ); } return array; } function parseInts( text ) { if ( text.length === 0 ) return []; const parts = text.trim().split( /\s+/ ); const array = new Array( parts.length ); for ( let i = 0, l = parts.length; i < l; i ++ ) { array[ i ] = parseInt( parts[ i ] ); } return array; } function parseId( text ) { return text.substring( 1 ); } function generateId() { return 'three_default_' + ( count ++ ); } function isEmpty( object ) { return Object.keys( object ).length === 0; } // asset function parseAsset( xml ) { return { unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ), upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] ) }; } function parseAssetUnit( xml ) { if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) { return parseFloat( xml.getAttribute( 'meter' ) ); } else { return 1; // default 1 meter } } function parseAssetUpAxis( xml ) { return xml !== undefined ? xml.textContent : 'Y_UP'; } // library function parseLibrary( xml, libraryName, nodeName, parser ) { const library = getElementsByTagName( xml, libraryName )[ 0 ]; if ( library !== undefined ) { const elements = getElementsByTagName( library, nodeName ); for ( let i = 0; i < elements.length; i ++ ) { parser( elements[ i ] ); } } } function buildLibrary( data, builder ) { for ( const name in data ) { const object = data[ name ]; object.build = builder( data[ name ] ); } } // get function getBuild( data, builder ) { if ( data.build !== undefined ) return data.build; data.build = builder( data ); return data.build; } // animation function parseAnimation( xml ) { const data = { sources: {}, samplers: {}, channels: {} }; let hasChildren = false; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; let id; switch ( child.nodeName ) { case 'source': id = child.getAttribute( 'id' ); data.sources[ id ] = parseSource( child ); break; case 'sampler': id = child.getAttribute( 'id' ); data.samplers[ id ] = parseAnimationSampler( child ); break; case 'channel': id = child.getAttribute( 'target' ); data.channels[ id ] = parseAnimationChannel( child ); break; case 'animation': // hierarchy of related animations parseAnimation( child ); hasChildren = true; break; default: console.log( child ); } } if ( hasChildren === false ) { // since 'id' attributes can be optional, it's necessary to generate a UUID for unqiue assignment library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data; } } function parseAnimationSampler( xml ) { const data = { inputs: {}, }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const id = parseId( child.getAttribute( 'source' ) ); const semantic = child.getAttribute( 'semantic' ); data.inputs[ semantic ] = id; break; } } return data; } function parseAnimationChannel( xml ) { const data = {}; const target = xml.getAttribute( 'target' ); // parsing SID Addressing Syntax let parts = target.split( '/' ); const id = parts.shift(); let sid = parts.shift(); // check selection syntax const arraySyntax = ( sid.indexOf( '(' ) !== - 1 ); const memberSyntax = ( sid.indexOf( '.' ) !== - 1 ); if ( memberSyntax ) { // member selection access parts = sid.split( '.' ); sid = parts.shift(); data.member = parts.shift(); } else if ( arraySyntax ) { // array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices. const indices = sid.split( '(' ); sid = indices.shift(); for ( let i = 0; i < indices.length; i ++ ) { indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) ); } data.indices = indices; } data.id = id; data.sid = sid; data.arraySyntax = arraySyntax; data.memberSyntax = memberSyntax; data.sampler = parseId( xml.getAttribute( 'source' ) ); return data; } function buildAnimation( data ) { const tracks = []; const channels = data.channels; const samplers = data.samplers; const sources = data.sources; for ( const target in channels ) { if ( channels.hasOwnProperty( target ) ) { const channel = channels[ target ]; const sampler = samplers[ channel.sampler ]; const inputId = sampler.inputs.INPUT; const outputId = sampler.inputs.OUTPUT; const inputSource = sources[ inputId ]; const outputSource = sources[ outputId ]; const animation = buildAnimationChannel( channel, inputSource, outputSource ); createKeyframeTracks( animation, tracks ); } } return tracks; } function getAnimation( id ) { return getBuild( library.animations[ id ], buildAnimation ); } function buildAnimationChannel( channel, inputSource, outputSource ) { const node = library.nodes[ channel.id ]; const object3D = getNode( node.id ); const transform = node.transforms[ channel.sid ]; const defaultMatrix = node.matrix.clone().transpose(); let time, stride; let i, il, j, jl; const data = {}; // the collada spec allows the animation of data in various ways. // depending on the transform type (matrix, translate, rotate, scale), we execute different logic switch ( transform ) { case 'matrix': for ( i = 0, il = inputSource.array.length; i < il; i ++ ) { time = inputSource.array[ i ]; stride = i * outputSource.stride; if ( data[ time ] === undefined ) data[ time ] = {}; if ( channel.arraySyntax === true ) { const value = outputSource.array[ stride ]; const index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ]; data[ time ][ index ] = value; } else { for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) { data[ time ][ j ] = outputSource.array[ stride + j ]; } } } break; case 'translate': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; case 'rotate': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; case 'scale': console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform ); break; } const keyframes = prepareAnimationData( data, defaultMatrix ); const animation = { name: object3D.uuid, keyframes: keyframes }; return animation; } function prepareAnimationData( data, defaultMatrix ) { const keyframes = []; // transfer data into a sortable array for ( const time in data ) { keyframes.push( { time: parseFloat( time ), value: data[ time ] } ); } // ensure keyframes are sorted by time keyframes.sort( ascending ); // now we clean up all animation data, so we can use them for keyframe tracks for ( let i = 0; i < 16; i ++ ) { transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] ); } return keyframes; // array sort function function ascending( a, b ) { return a.time - b.time; } } const position = new Vector3(); const scale = new Vector3(); const quaternion = new Quaternion(); function createKeyframeTracks( animation, tracks ) { const keyframes = animation.keyframes; const name = animation.name; const times = []; const positionData = []; const quaternionData = []; const scaleData = []; for ( let i = 0, l = keyframes.length; i < l; i ++ ) { const keyframe = keyframes[ i ]; const time = keyframe.time; const value = keyframe.value; matrix.fromArray( value ).transpose(); matrix.decompose( position, quaternion, scale ); times.push( time ); positionData.push( position.x, position.y, position.z ); quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w ); scaleData.push( scale.x, scale.y, scale.z ); } if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) ); if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) ); if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) ); return tracks; } function transformAnimationData( keyframes, property, defaultValue ) { let keyframe; let empty = true; let i, l; // check, if values of a property are missing in our keyframes for ( i = 0, l = keyframes.length; i < l; i ++ ) { keyframe = keyframes[ i ]; if ( keyframe.value[ property ] === undefined ) { keyframe.value[ property ] = null; // mark as missing } else { empty = false; } } if ( empty === true ) { // no values at all, so we set a default value for ( i = 0, l = keyframes.length; i < l; i ++ ) { keyframe = keyframes[ i ]; keyframe.value[ property ] = defaultValue; } } else { // filling gaps createMissingKeyframes( keyframes, property ); } } function createMissingKeyframes( keyframes, property ) { let prev, next; for ( let i = 0, l = keyframes.length; i < l; i ++ ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] === null ) { prev = getPrev( keyframes, i, property ); next = getNext( keyframes, i, property ); if ( prev === null ) { keyframe.value[ property ] = next.value[ property ]; continue; } if ( next === null ) { keyframe.value[ property ] = prev.value[ property ]; continue; } interpolate( keyframe, prev, next, property ); } } } function getPrev( keyframes, i, property ) { while ( i >= 0 ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] !== null ) return keyframe; i --; } return null; } function getNext( keyframes, i, property ) { while ( i < keyframes.length ) { const keyframe = keyframes[ i ]; if ( keyframe.value[ property ] !== null ) return keyframe; i ++; } return null; } function interpolate( key, prev, next, property ) { if ( ( next.time - prev.time ) === 0 ) { key.value[ property ] = prev.value[ property ]; return; } key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ]; } // animation clips function parseAnimationClip( xml ) { const data = { name: xml.getAttribute( 'id' ) || 'default', start: parseFloat( xml.getAttribute( 'start' ) || 0 ), end: parseFloat( xml.getAttribute( 'end' ) || 0 ), animations: [] }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'instance_animation': data.animations.push( parseId( child.getAttribute( 'url' ) ) ); break; } } library.clips[ xml.getAttribute( 'id' ) ] = data; } function buildAnimationClip( data ) { const tracks = []; const name = data.name; const duration = ( data.end - data.start ) || - 1; const animations = data.animations; for ( let i = 0, il = animations.length; i < il; i ++ ) { const animationTracks = getAnimation( animations[ i ] ); for ( let j = 0, jl = animationTracks.length; j < jl; j ++ ) { tracks.push( animationTracks[ j ] ); } } return new AnimationClip( name, duration, tracks ); } function getAnimationClip( id ) { return getBuild( library.clips[ id ], buildAnimationClip ); } // controller function parseController( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'skin': // there is exactly one skin per controller data.id = parseId( child.getAttribute( 'source' ) ); data.skin = parseSkin( child ); break; case 'morph': data.id = parseId( child.getAttribute( 'source' ) ); console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' ); break; } } library.controllers[ xml.getAttribute( 'id' ) ] = data; } function parseSkin( xml ) { const data = { sources: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'bind_shape_matrix': data.bindShapeMatrix = parseFloats( child.textContent ); break; case 'source': const id = child.getAttribute( 'id' ); data.sources[ id ] = parseSource( child ); break; case 'joints': data.joints = parseJoints( child ); break; case 'vertex_weights': data.vertexWeights = parseVertexWeights( child ); break; } } return data; } function parseJoints( xml ) { const data = { inputs: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const semantic = child.getAttribute( 'semantic' ); const id = parseId( child.getAttribute( 'source' ) ); data.inputs[ semantic ] = id; break; } } return data; } function parseVertexWeights( xml ) { const data = { inputs: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const semantic = child.getAttribute( 'semantic' ); const id = parseId( child.getAttribute( 'source' ) ); const offset = parseInt( child.getAttribute( 'offset' ) ); data.inputs[ semantic ] = { id: id, offset: offset }; break; case 'vcount': data.vcount = parseInts( child.textContent ); break; case 'v': data.v = parseInts( child.textContent ); break; } } return data; } function buildController( data ) { const build = { id: data.id }; const geometry = library.geometries[ build.id ]; if ( data.skin !== undefined ) { build.skin = buildSkin( data.skin ); // we enhance the 'sources' property of the corresponding geometry with our skin data geometry.sources.skinIndices = build.skin.indices; geometry.sources.skinWeights = build.skin.weights; } return build; } function buildSkin( data ) { const BONE_LIMIT = 4; const build = { joints: [], // this must be an array to preserve the joint order indices: { array: [], stride: BONE_LIMIT }, weights: { array: [], stride: BONE_LIMIT } }; const sources = data.sources; const vertexWeights = data.vertexWeights; const vcount = vertexWeights.vcount; const v = vertexWeights.v; const jointOffset = vertexWeights.inputs.JOINT.offset; const weightOffset = vertexWeights.inputs.WEIGHT.offset; const jointSource = data.sources[ data.joints.inputs.JOINT ]; const inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ]; const weights = sources[ vertexWeights.inputs.WEIGHT.id ].array; let stride = 0; let i, j, l; // procces skin data for each vertex for ( i = 0, l = vcount.length; i < l; i ++ ) { const jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex const vertexSkinData = []; for ( j = 0; j < jointCount; j ++ ) { const skinIndex = v[ stride + jointOffset ]; const weightId = v[ stride + weightOffset ]; const skinWeight = weights[ weightId ]; vertexSkinData.push( { index: skinIndex, weight: skinWeight } ); stride += 2; } // we sort the joints in descending order based on the weights. // this ensures, we only procced the most important joints of the vertex vertexSkinData.sort( descending ); // now we provide for each vertex a set of four index and weight values. // the order of the skin data matches the order of vertices for ( j = 0; j < BONE_LIMIT; j ++ ) { const d = vertexSkinData[ j ]; if ( d !== undefined ) { build.indices.array.push( d.index ); build.weights.array.push( d.weight ); } else { build.indices.array.push( 0 ); build.weights.array.push( 0 ); } } } // setup bind matrix if ( data.bindShapeMatrix ) { build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose(); } else { build.bindMatrix = new Matrix4().identity(); } // process bones and inverse bind matrix data for ( i = 0, l = jointSource.array.length; i < l; i ++ ) { const name = jointSource.array[ i ]; const boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose(); build.joints.push( { name: name, boneInverse: boneInverse } ); } return build; // array sort function function descending( a, b ) { return b.weight - a.weight; } } function getController( id ) { return getBuild( library.controllers[ id ], buildController ); } // image function parseImage( xml ) { const data = { init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent }; library.images[ xml.getAttribute( 'id' ) ] = data; } function buildImage( data ) { if ( data.build !== undefined ) return data.build; return data.init_from; } function getImage( id ) { const data = library.images[ id ]; if ( data !== undefined ) { return getBuild( data, buildImage ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id ); return null; } // effect function parseEffect( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'profile_COMMON': data.profile = parseEffectProfileCOMMON( child ); break; } } library.effects[ xml.getAttribute( 'id' ) ] = data; } function parseEffectProfileCOMMON( xml ) { const data = { surfaces: {}, samplers: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'newparam': parseEffectNewparam( child, data ); break; case 'technique': data.technique = parseEffectTechnique( child ); break; case 'extra': data.extra = parseEffectExtra( child ); break; } } return data; } function parseEffectNewparam( xml, data ) { const sid = xml.getAttribute( 'sid' ); for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'surface': data.surfaces[ sid ] = parseEffectSurface( child ); break; case 'sampler2D': data.samplers[ sid ] = parseEffectSampler( child ); break; } } } function parseEffectSurface( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'init_from': data.init_from = child.textContent; break; } } return data; } function parseEffectSampler( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'source': data.source = child.textContent; break; } } return data; } function parseEffectTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'constant': case 'lambert': case 'blinn': case 'phong': data.type = child.nodeName; data.parameters = parseEffectParameters( child ); break; case 'extra': data.extra = parseEffectExtra( child ); break; } } return data; } function parseEffectParameters( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'emission': case 'diffuse': case 'specular': case 'bump': case 'ambient': case 'shininess': case 'transparency': data[ child.nodeName ] = parseEffectParameter( child ); break; case 'transparent': data[ child.nodeName ] = { opaque: child.hasAttribute( 'opaque' ) ? child.getAttribute( 'opaque' ) : 'A_ONE', data: parseEffectParameter( child ) }; break; } } return data; } function parseEffectParameter( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'color': data[ child.nodeName ] = parseFloats( child.textContent ); break; case 'float': data[ child.nodeName ] = parseFloat( child.textContent ); break; case 'texture': data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) }; break; } } return data; } function parseEffectParameterTexture( xml ) { const data = { technique: {} }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'extra': parseEffectParameterTextureExtra( child, data ); break; } } return data; } function parseEffectParameterTextureExtra( xml, data ) { for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique': parseEffectParameterTextureExtraTechnique( child, data ); break; } } } function parseEffectParameterTextureExtraTechnique( xml, data ) { for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'repeatU': case 'repeatV': case 'offsetU': case 'offsetV': data.technique[ child.nodeName ] = parseFloat( child.textContent ); break; case 'wrapU': case 'wrapV': // some files have values for wrapU/wrapV which become NaN via parseInt if ( child.textContent.toUpperCase() === 'TRUE' ) { data.technique[ child.nodeName ] = 1; } else if ( child.textContent.toUpperCase() === 'FALSE' ) { data.technique[ child.nodeName ] = 0; } else { data.technique[ child.nodeName ] = parseInt( child.textContent ); } break; case 'bump': data[ child.nodeName ] = parseEffectExtraTechniqueBump( child ); break; } } } function parseEffectExtra( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique': data.technique = parseEffectExtraTechnique( child ); break; } } return data; } function parseEffectExtraTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'double_sided': data[ child.nodeName ] = parseInt( child.textContent ); break; case 'bump': data[ child.nodeName ] = parseEffectExtraTechniqueBump( child ); break; } } return data; } function parseEffectExtraTechniqueBump( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'texture': data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), texcoord: child.getAttribute( 'texcoord' ), extra: parseEffectParameterTexture( child ) }; break; } } return data; } function buildEffect( data ) { return data; } function getEffect( id ) { return getBuild( library.effects[ id ], buildEffect ); } // material function parseMaterial( xml ) { const data = { name: xml.getAttribute( 'name' ) }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'instance_effect': data.url = parseId( child.getAttribute( 'url' ) ); break; } } library.materials[ xml.getAttribute( 'id' ) ] = data; } function getTextureLoader( image ) { let loader; let extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/ extension = extension.toLowerCase(); switch ( extension ) { case 'tga': loader = tgaLoader; break; default: loader = textureLoader; } return loader; } function buildMaterial( data ) { const effect = getEffect( data.url ); const technique = effect.profile.technique; let material; switch ( technique.type ) { case 'phong': case 'blinn': material = new MeshPhongMaterial(); break; case 'lambert': material = new MeshLambertMaterial(); break; default: material = new MeshBasicMaterial(); break; } material.name = data.name || ''; function getTexture( textureObject, encoding = null ) { const sampler = effect.profile.samplers[ textureObject.id ]; let image = null; // get image if ( sampler !== undefined ) { const surface = effect.profile.surfaces[ sampler.source ]; image = getImage( surface.init_from ); } else { console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' ); image = getImage( textureObject.id ); } // create texture if image is avaiable if ( image !== null ) { const loader = getTextureLoader( image ); if ( loader !== undefined ) { const texture = loader.load( image ); const extra = textureObject.extra; if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) { const technique = extra.technique; texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping; texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping; texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 ); texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 ); } else { texture.wrapS = RepeatWrapping; texture.wrapT = RepeatWrapping; } if ( encoding !== null ) { texture.encoding = encoding; } return texture; } else { console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image ); return null; } } else { console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id ); return null; } } const parameters = technique.parameters; for ( const key in parameters ) { const parameter = parameters[ key ]; switch ( key ) { case 'diffuse': if ( parameter.color ) material.color.fromArray( parameter.color ); if ( parameter.texture ) material.map = getTexture( parameter.texture, sRGBEncoding ); break; case 'specular': if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color ); if ( parameter.texture ) material.specularMap = getTexture( parameter.texture ); break; case 'bump': if ( parameter.texture ) material.normalMap = getTexture( parameter.texture ); break; case 'ambient': if ( parameter.texture ) material.lightMap = getTexture( parameter.texture, sRGBEncoding ); break; case 'shininess': if ( parameter.float && material.shininess ) material.shininess = parameter.float; break; case 'emission': if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color ); if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture, sRGBEncoding ); break; } } material.color.convertSRGBToLinear(); if ( material.specular ) material.specular.convertSRGBToLinear(); if ( material.emissive ) material.emissive.convertSRGBToLinear(); // let transparent = parameters[ 'transparent' ]; let transparency = parameters[ 'transparency' ]; // does not exist but if ( transparency === undefined && transparent ) { transparency = { float: 1 }; } // does not exist but if ( transparent === undefined && transparency ) { transparent = { opaque: 'A_ONE', data: { color: [ 1, 1, 1, 1 ] } }; } if ( transparent && transparency ) { // handle case if a texture exists but no color if ( transparent.data.texture ) { // we do not set an alpha map (see #13792) material.transparent = true; } else { const color = transparent.data.color; switch ( transparent.opaque ) { case 'A_ONE': material.opacity = color[ 3 ] * transparency.float; break; case 'RGB_ZERO': material.opacity = 1 - ( color[ 0 ] * transparency.float ); break; case 'A_ZERO': material.opacity = 1 - ( color[ 3 ] * transparency.float ); break; case 'RGB_ONE': material.opacity = color[ 0 ] * transparency.float; break; default: console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque ); } if ( material.opacity < 1 ) material.transparent = true; } } // if ( technique.extra !== undefined && technique.extra.technique !== undefined ) { const techniques = technique.extra.technique; for ( const k in techniques ) { const v = techniques[ k ]; switch ( k ) { case 'double_sided': material.side = ( v === 1 ? DoubleSide : FrontSide ); break; case 'bump': material.normalMap = getTexture( v.texture ); material.normalScale = new Vector2( 1, 1 ); break; } } } return material; } function getMaterial( id ) { return getBuild( library.materials[ id ], buildMaterial ); } // camera function parseCamera( xml ) { const data = { name: xml.getAttribute( 'name' ) }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'optics': data.optics = parseCameraOptics( child ); break; } } library.cameras[ xml.getAttribute( 'id' ) ] = data; } function parseCameraOptics( xml ) { for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'technique_common': return parseCameraTechnique( child ); } } return {}; } function parseCameraTechnique( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'perspective': case 'orthographic': data.technique = child.nodeName; data.parameters = parseCameraParameters( child ); break; } } return data; } function parseCameraParameters( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'xfov': case 'yfov': case 'xmag': case 'ymag': case 'znear': case 'zfar': case 'aspect_ratio': data[ child.nodeName ] = parseFloat( child.textContent ); break; } } return data; } function buildCamera( data ) { let camera; switch ( data.optics.technique ) { case 'perspective': camera = new PerspectiveCamera( data.optics.parameters.yfov, data.optics.parameters.aspect_ratio, data.optics.parameters.znear, data.optics.parameters.zfar ); break; case 'orthographic': let ymag = data.optics.parameters.ymag; let xmag = data.optics.parameters.xmag; const aspectRatio = data.optics.parameters.aspect_ratio; xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag; ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag; xmag *= 0.5; ymag *= 0.5; camera = new OrthographicCamera( - xmag, xmag, ymag, - ymag, // left, right, top, bottom data.optics.parameters.znear, data.optics.parameters.zfar ); break; default: camera = new PerspectiveCamera(); break; } camera.name = data.name || ''; return camera; } function getCamera( id ) { const data = library.cameras[ id ]; if ( data !== undefined ) { return getBuild( data, buildCamera ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id ); return null; } // light function parseLight( xml ) { let data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique_common': data = parseLightTechnique( child ); break; } } library.lights[ xml.getAttribute( 'id' ) ] = data; } function parseLightTechnique( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'directional': case 'point': case 'spot': case 'ambient': data.technique = child.nodeName; data.parameters = parseLightParameters( child ); } } return data; } function parseLightParameters( xml ) { const data = {}; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'color': const array = parseFloats( child.textContent ); data.color = new Color().fromArray( array ).convertSRGBToLinear(); break; case 'falloff_angle': data.falloffAngle = parseFloat( child.textContent ); break; case 'quadratic_attenuation': const f = parseFloat( child.textContent ); data.distance = f ? Math.sqrt( 1 / f ) : 0; break; } } return data; } function buildLight( data ) { let light; switch ( data.technique ) { case 'directional': light = new DirectionalLight(); break; case 'point': light = new PointLight(); break; case 'spot': light = new SpotLight(); break; case 'ambient': light = new AmbientLight(); break; } if ( data.parameters.color ) light.color.copy( data.parameters.color ); if ( data.parameters.distance ) light.distance = data.parameters.distance; return light; } function getLight( id ) { const data = library.lights[ id ]; if ( data !== undefined ) { return getBuild( data, buildLight ); } console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id ); return null; } // geometry function parseGeometry( xml ) { const data = { name: xml.getAttribute( 'name' ), sources: {}, vertices: {}, primitives: [] }; const mesh = getElementsByTagName( xml, 'mesh' )[ 0 ]; // the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep if ( mesh === undefined ) return; for ( let i = 0; i < mesh.childNodes.length; i ++ ) { const child = mesh.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; const id = child.getAttribute( 'id' ); switch ( child.nodeName ) { case 'source': data.sources[ id ] = parseSource( child ); break; case 'vertices': // data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ]; data.vertices = parseGeometryVertices( child ); break; case 'polygons': console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName ); break; case 'lines': case 'linestrips': case 'polylist': case 'triangles': data.primitives.push( parseGeometryPrimitive( child ) ); break; default: console.log( child ); } } library.geometries[ xml.getAttribute( 'id' ) ] = data; } function parseSource( xml ) { const data = { array: [], stride: 3 }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'float_array': data.array = parseFloats( child.textContent ); break; case 'Name_array': data.array = parseStrings( child.textContent ); break; case 'technique_common': const accessor = getElementsByTagName( child, 'accessor' )[ 0 ]; if ( accessor !== undefined ) { data.stride = parseInt( accessor.getAttribute( 'stride' ) ); } break; } } return data; } function parseGeometryVertices( xml ) { const data = {}; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) ); } return data; } function parseGeometryPrimitive( xml ) { const primitive = { type: xml.nodeName, material: xml.getAttribute( 'material' ), count: parseInt( xml.getAttribute( 'count' ) ), inputs: {}, stride: 0, hasUV: false }; for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'input': const id = parseId( child.getAttribute( 'source' ) ); const semantic = child.getAttribute( 'semantic' ); const offset = parseInt( child.getAttribute( 'offset' ) ); const set = parseInt( child.getAttribute( 'set' ) ); const inputname = ( set > 0 ? semantic + set : semantic ); primitive.inputs[ inputname ] = { id: id, offset: offset }; primitive.stride = Math.max( primitive.stride, offset + 1 ); if ( semantic === 'TEXCOORD' ) primitive.hasUV = true; break; case 'vcount': primitive.vcount = parseInts( child.textContent ); break; case 'p': primitive.p = parseInts( child.textContent ); break; } } return primitive; } function groupPrimitives( primitives ) { const build = {}; for ( let i = 0; i < primitives.length; i ++ ) { const primitive = primitives[ i ]; if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = []; build[ primitive.type ].push( primitive ); } return build; } function checkUVCoordinates( primitives ) { let count = 0; for ( let i = 0, l = primitives.length; i < l; i ++ ) { const primitive = primitives[ i ]; if ( primitive.hasUV === true ) { count ++; } } if ( count > 0 && count < primitives.length ) { primitives.uvsNeedsFix = true; } } function buildGeometry( data ) { const build = {}; const sources = data.sources; const vertices = data.vertices; const primitives = data.primitives; if ( primitives.length === 0 ) return {}; // our goal is to create one buffer geometry for a single type of primitives // first, we group all primitives by their type const groupedPrimitives = groupPrimitives( primitives ); for ( const type in groupedPrimitives ) { const primitiveType = groupedPrimitives[ type ]; // second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines) checkUVCoordinates( primitiveType ); // third, create a buffer geometry for each type of primitives build[ type ] = buildGeometryType( primitiveType, sources, vertices ); } return build; } function buildGeometryType( primitives, sources, vertices ) { const build = {}; const position = { array: [], stride: 0 }; const normal = { array: [], stride: 0 }; const uv = { array: [], stride: 0 }; const uv2 = { array: [], stride: 0 }; const color = { array: [], stride: 0 }; const skinIndex = { array: [], stride: 4 }; const skinWeight = { array: [], stride: 4 }; const geometry = new BufferGeometry(); const materialKeys = []; let start = 0; for ( let p = 0; p < primitives.length; p ++ ) { const primitive = primitives[ p ]; const inputs = primitive.inputs; // groups let count = 0; switch ( primitive.type ) { case 'lines': case 'linestrips': count = primitive.count * 2; break; case 'triangles': count = primitive.count * 3; break; case 'polylist': for ( let g = 0; g < primitive.count; g ++ ) { const vc = primitive.vcount[ g ]; switch ( vc ) { case 3: count += 3; // single triangle break; case 4: count += 6; // quad, subdivided into two triangles break; default: count += ( vc - 2 ) * 3; // polylist with more than four vertices break; } } break; default: console.warn( 'THREE.ColladaLoader: Unknow primitive type:', primitive.type ); } geometry.addGroup( start, count, p ); start += count; // material if ( primitive.material ) { materialKeys.push( primitive.material ); } // geometry data for ( const name in inputs ) { const input = inputs[ name ]; switch ( name ) { case 'VERTEX': for ( const key in vertices ) { const id = vertices[ key ]; switch ( key ) { case 'POSITION': const prevLength = position.array.length; buildGeometryData( primitive, sources[ id ], input.offset, position.array ); position.stride = sources[ id ].stride; if ( sources.skinWeights && sources.skinIndices ) { buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array ); buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array ); } // see #3803 if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) { const count = ( position.array.length - prevLength ) / position.stride; for ( let i = 0; i < count; i ++ ) { // fill missing uv coordinates uv.array.push( 0, 0 ); } } break; case 'NORMAL': buildGeometryData( primitive, sources[ id ], input.offset, normal.array ); normal.stride = sources[ id ].stride; break; case 'COLOR': buildGeometryData( primitive, sources[ id ], input.offset, color.array ); color.stride = sources[ id ].stride; break; case 'TEXCOORD': buildGeometryData( primitive, sources[ id ], input.offset, uv.array ); uv.stride = sources[ id ].stride; break; case 'TEXCOORD1': buildGeometryData( primitive, sources[ id ], input.offset, uv2.array ); uv.stride = sources[ id ].stride; break; default: console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key ); } } break; case 'NORMAL': buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array ); normal.stride = sources[ input.id ].stride; break; case 'COLOR': buildGeometryData( primitive, sources[ input.id ], input.offset, color.array, true ); color.stride = sources[ input.id ].stride; break; case 'TEXCOORD': buildGeometryData( primitive, sources[ input.id ], input.offset, uv.array ); uv.stride = sources[ input.id ].stride; break; case 'TEXCOORD1': buildGeometryData( primitive, sources[ input.id ], input.offset, uv2.array ); uv2.stride = sources[ input.id ].stride; break; } } } // build geometry if ( position.array.length > 0 ) geometry.setAttribute( 'position', new Float32BufferAttribute( position.array, position.stride ) ); if ( normal.array.length > 0 ) geometry.setAttribute( 'normal', new Float32BufferAttribute( normal.array, normal.stride ) ); if ( color.array.length > 0 ) geometry.setAttribute( 'color', new Float32BufferAttribute( color.array, color.stride ) ); if ( uv.array.length > 0 ) geometry.setAttribute( 'uv', new Float32BufferAttribute( uv.array, uv.stride ) ); if ( uv2.array.length > 0 ) geometry.setAttribute( 'uv2', new Float32BufferAttribute( uv2.array, uv2.stride ) ); if ( skinIndex.array.length > 0 ) geometry.setAttribute( 'skinIndex', new Float32BufferAttribute( skinIndex.array, skinIndex.stride ) ); if ( skinWeight.array.length > 0 ) geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeight.array, skinWeight.stride ) ); build.data = geometry; build.type = primitives[ 0 ].type; build.materialKeys = materialKeys; return build; } function buildGeometryData( primitive, source, offset, array, isColor = false ) { const indices = primitive.p; const stride = primitive.stride; const vcount = primitive.vcount; function pushVector( i ) { let index = indices[ i + offset ] * sourceStride; const length = index + sourceStride; for ( ; index < length; index ++ ) { array.push( sourceArray[ index ] ); } if ( isColor ) { // convert the vertex colors from srgb to linear if present const startIndex = array.length - sourceStride - 1; tempColor.setRGB( array[ startIndex + 0 ], array[ startIndex + 1 ], array[ startIndex + 2 ] ).convertSRGBToLinear(); array[ startIndex + 0 ] = tempColor.r; array[ startIndex + 1 ] = tempColor.g; array[ startIndex + 2 ] = tempColor.b; } } const sourceArray = source.array; const sourceStride = source.stride; if ( primitive.vcount !== undefined ) { let index = 0; for ( let i = 0, l = vcount.length; i < l; i ++ ) { const count = vcount[ i ]; if ( count === 4 ) { const a = index + stride * 0; const b = index + stride * 1; const c = index + stride * 2; const d = index + stride * 3; pushVector( a ); pushVector( b ); pushVector( d ); pushVector( b ); pushVector( c ); pushVector( d ); } else if ( count === 3 ) { const a = index + stride * 0; const b = index + stride * 1; const c = index + stride * 2; pushVector( a ); pushVector( b ); pushVector( c ); } else if ( count > 4 ) { for ( let k = 1, kl = ( count - 2 ); k <= kl; k ++ ) { const a = index + stride * 0; const b = index + stride * k; const c = index + stride * ( k + 1 ); pushVector( a ); pushVector( b ); pushVector( c ); } } index += stride * count; } } else { for ( let i = 0, l = indices.length; i < l; i += stride ) { pushVector( i ); } } } function getGeometry( id ) { return getBuild( library.geometries[ id ], buildGeometry ); } // kinematics function parseKinematicsModel( xml ) { const data = { name: xml.getAttribute( 'name' ) || '', joints: {}, links: [] }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique_common': parseKinematicsTechniqueCommon( child, data ); break; } } library.kinematicsModels[ xml.getAttribute( 'id' ) ] = data; } function buildKinematicsModel( data ) { if ( data.build !== undefined ) return data.build; return data; } function getKinematicsModel( id ) { return getBuild( library.kinematicsModels[ id ], buildKinematicsModel ); } function parseKinematicsTechniqueCommon( xml, data ) { for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'joint': data.joints[ child.getAttribute( 'sid' ) ] = parseKinematicsJoint( child ); break; case 'link': data.links.push( parseKinematicsLink( child ) ); break; } } } function parseKinematicsJoint( xml ) { let data; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'prismatic': case 'revolute': data = parseKinematicsJointParameter( child ); break; } } return data; } function parseKinematicsJointParameter( xml ) { const data = { sid: xml.getAttribute( 'sid' ), name: xml.getAttribute( 'name' ) || '', axis: new Vector3(), limits: { min: 0, max: 0 }, type: xml.nodeName, static: false, zeroPosition: 0, middlePosition: 0 }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'axis': const array = parseFloats( child.textContent ); data.axis.fromArray( array ); break; case 'limits': const max = child.getElementsByTagName( 'max' )[ 0 ]; const min = child.getElementsByTagName( 'min' )[ 0 ]; data.limits.max = parseFloat( max.textContent ); data.limits.min = parseFloat( min.textContent ); break; } } // if min is equal to or greater than max, consider the joint static if ( data.limits.min >= data.limits.max ) { data.static = true; } // calculate middle position data.middlePosition = ( data.limits.min + data.limits.max ) / 2.0; return data; } function parseKinematicsLink( xml ) { const data = { sid: xml.getAttribute( 'sid' ), name: xml.getAttribute( 'name' ) || '', attachments: [], transforms: [] }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'attachment_full': data.attachments.push( parseKinematicsAttachment( child ) ); break; case 'matrix': case 'translate': case 'rotate': data.transforms.push( parseKinematicsTransform( child ) ); break; } } return data; } function parseKinematicsAttachment( xml ) { const data = { joint: xml.getAttribute( 'joint' ).split( '/' ).pop(), transforms: [], links: [] }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'link': data.links.push( parseKinematicsLink( child ) ); break; case 'matrix': case 'translate': case 'rotate': data.transforms.push( parseKinematicsTransform( child ) ); break; } } return data; } function parseKinematicsTransform( xml ) { const data = { type: xml.nodeName }; const array = parseFloats( xml.textContent ); switch ( data.type ) { case 'matrix': data.obj = new Matrix4(); data.obj.fromArray( array ).transpose(); break; case 'translate': data.obj = new Vector3(); data.obj.fromArray( array ); break; case 'rotate': data.obj = new Vector3(); data.obj.fromArray( array ); data.angle = MathUtils.degToRad( array[ 3 ] ); break; } return data; } // physics function parsePhysicsModel( xml ) { const data = { name: xml.getAttribute( 'name' ) || '', rigidBodies: {} }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'rigid_body': data.rigidBodies[ child.getAttribute( 'name' ) ] = {}; parsePhysicsRigidBody( child, data.rigidBodies[ child.getAttribute( 'name' ) ] ); break; } } library.physicsModels[ xml.getAttribute( 'id' ) ] = data; } function parsePhysicsRigidBody( xml, data ) { for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'technique_common': parsePhysicsTechniqueCommon( child, data ); break; } } } function parsePhysicsTechniqueCommon( xml, data ) { for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'inertia': data.inertia = parseFloats( child.textContent ); break; case 'mass': data.mass = parseFloats( child.textContent )[ 0 ]; break; } } } // scene function parseKinematicsScene( xml ) { const data = { bindJointAxis: [] }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'bind_joint_axis': data.bindJointAxis.push( parseKinematicsBindJointAxis( child ) ); break; } } library.kinematicsScenes[ parseId( xml.getAttribute( 'url' ) ) ] = data; } function parseKinematicsBindJointAxis( xml ) { const data = { target: xml.getAttribute( 'target' ).split( '/' ).pop() }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; switch ( child.nodeName ) { case 'axis': const param = child.getElementsByTagName( 'param' )[ 0 ]; data.axis = param.textContent; const tmpJointIndex = data.axis.split( 'inst_' ).pop().split( 'axis' )[ 0 ]; data.jointIndex = tmpJointIndex.substring( 0, tmpJointIndex.length - 1 ); break; } } return data; } function buildKinematicsScene( data ) { if ( data.build !== undefined ) return data.build; return data; } function getKinematicsScene( id ) { return getBuild( library.kinematicsScenes[ id ], buildKinematicsScene ); } function setupKinematics() { const kinematicsModelId = Object.keys( library.kinematicsModels )[ 0 ]; const kinematicsSceneId = Object.keys( library.kinematicsScenes )[ 0 ]; const visualSceneId = Object.keys( library.visualScenes )[ 0 ]; if ( kinematicsModelId === undefined || kinematicsSceneId === undefined ) return; const kinematicsModel = getKinematicsModel( kinematicsModelId ); const kinematicsScene = getKinematicsScene( kinematicsSceneId ); const visualScene = getVisualScene( visualSceneId ); const bindJointAxis = kinematicsScene.bindJointAxis; const jointMap = {}; for ( let i = 0, l = bindJointAxis.length; i < l; i ++ ) { const axis = bindJointAxis[ i ]; // the result of the following query is an element of type 'translate', 'rotate','scale' or 'matrix' const targetElement = collada.querySelector( '[sid="' + axis.target + '"]' ); if ( targetElement ) { // get the parent of the transform element const parentVisualElement = targetElement.parentElement; // connect the joint of the kinematics model with the element in the visual scene connect( axis.jointIndex, parentVisualElement ); } } function connect( jointIndex, visualElement ) { const visualElementName = visualElement.getAttribute( 'name' ); const joint = kinematicsModel.joints[ jointIndex ]; visualScene.traverse( function ( object ) { if ( object.name === visualElementName ) { jointMap[ jointIndex ] = { object: object, transforms: buildTransformList( visualElement ), joint: joint, position: joint.zeroPosition }; } } ); } const m0 = new Matrix4(); kinematics = { joints: kinematicsModel && kinematicsModel.joints, getJointValue: function ( jointIndex ) { const jointData = jointMap[ jointIndex ]; if ( jointData ) { return jointData.position; } else { console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' doesn\'t exist.' ); } }, setJointValue: function ( jointIndex, value ) { const jointData = jointMap[ jointIndex ]; if ( jointData ) { const joint = jointData.joint; if ( value > joint.limits.max || value < joint.limits.min ) { console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' value ' + value + ' outside of limits (min: ' + joint.limits.min + ', max: ' + joint.limits.max + ').' ); } else if ( joint.static ) { console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' is static.' ); } else { const object = jointData.object; const axis = joint.axis; const transforms = jointData.transforms; matrix.identity(); // each update, we have to apply all transforms in the correct order for ( let i = 0; i < transforms.length; i ++ ) { const transform = transforms[ i ]; // if there is a connection of the transform node with a joint, apply the joint value if ( transform.sid && transform.sid.indexOf( jointIndex ) !== - 1 ) { switch ( joint.type ) { case 'revolute': matrix.multiply( m0.makeRotationAxis( axis, MathUtils.degToRad( value ) ) ); break; case 'prismatic': matrix.multiply( m0.makeTranslation( axis.x * value, axis.y * value, axis.z * value ) ); break; default: console.warn( 'THREE.ColladaLoader: Unknown joint type: ' + joint.type ); break; } } else { switch ( transform.type ) { case 'matrix': matrix.multiply( transform.obj ); break; case 'translate': matrix.multiply( m0.makeTranslation( transform.obj.x, transform.obj.y, transform.obj.z ) ); break; case 'scale': matrix.scale( transform.obj ); break; case 'rotate': matrix.multiply( m0.makeRotationAxis( transform.obj, transform.angle ) ); break; } } } object.matrix.copy( matrix ); object.matrix.decompose( object.position, object.quaternion, object.scale ); jointMap[ jointIndex ].position = value; } } else { console.log( 'THREE.ColladaLoader: ' + jointIndex + ' does not exist.' ); } } }; } function buildTransformList( node ) { const transforms = []; const xml = collada.querySelector( '[id="' + node.id + '"]' ); for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; let array, vector; switch ( child.nodeName ) { case 'matrix': array = parseFloats( child.textContent ); const matrix = new Matrix4().fromArray( array ).transpose(); transforms.push( { sid: child.getAttribute( 'sid' ), type: child.nodeName, obj: matrix } ); break; case 'translate': case 'scale': array = parseFloats( child.textContent ); vector = new Vector3().fromArray( array ); transforms.push( { sid: child.getAttribute( 'sid' ), type: child.nodeName, obj: vector } ); break; case 'rotate': array = parseFloats( child.textContent ); vector = new Vector3().fromArray( array ); const angle = MathUtils.degToRad( array[ 3 ] ); transforms.push( { sid: child.getAttribute( 'sid' ), type: child.nodeName, obj: vector, angle: angle } ); break; } } return transforms; } // nodes function prepareNodes( xml ) { const elements = xml.getElementsByTagName( 'node' ); // ensure all node elements have id attributes for ( let i = 0; i < elements.length; i ++ ) { const element = elements[ i ]; if ( element.hasAttribute( 'id' ) === false ) { element.setAttribute( 'id', generateId() ); } } } const matrix = new Matrix4(); const vector = new Vector3(); function parseNode( xml ) { const data = { name: xml.getAttribute( 'name' ) || '', type: xml.getAttribute( 'type' ), id: xml.getAttribute( 'id' ), sid: xml.getAttribute( 'sid' ), matrix: new Matrix4(), nodes: [], instanceCameras: [], instanceControllers: [], instanceLights: [], instanceGeometries: [], instanceNodes: [], transforms: {} }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; if ( child.nodeType !== 1 ) continue; let array; switch ( child.nodeName ) { case 'node': data.nodes.push( child.getAttribute( 'id' ) ); parseNode( child ); break; case 'instance_camera': data.instanceCameras.push( parseId( child.getAttribute( 'url' ) ) ); break; case 'instance_controller': data.instanceControllers.push( parseNodeInstance( child ) ); break; case 'instance_light': data.instanceLights.push( parseId( child.getAttribute( 'url' ) ) ); break; case 'instance_geometry': data.instanceGeometries.push( parseNodeInstance( child ) ); break; case 'instance_node': data.instanceNodes.push( parseId( child.getAttribute( 'url' ) ) ); break; case 'matrix': array = parseFloats( child.textContent ); data.matrix.multiply( matrix.fromArray( array ).transpose() ); data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName; break; case 'translate': array = parseFloats( child.textContent ); vector.fromArray( array ); data.matrix.multiply( matrix.makeTranslation( vector.x, vector.y, vector.z ) ); data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName; break; case 'rotate': array = parseFloats( child.textContent ); const angle = MathUtils.degToRad( array[ 3 ] ); data.matrix.multiply( matrix.makeRotationAxis( vector.fromArray( array ), angle ) ); data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName; break; case 'scale': array = parseFloats( child.textContent ); data.matrix.scale( vector.fromArray( array ) ); data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName; break; case 'extra': break; default: console.log( child ); } } if ( hasNode( data.id ) ) { console.warn( 'THREE.ColladaLoader: There is already a node with ID %s. Exclude current node from further processing.', data.id ); } else { library.nodes[ data.id ] = data; } return data; } function parseNodeInstance( xml ) { const data = { id: parseId( xml.getAttribute( 'url' ) ), materials: {}, skeletons: [] }; for ( let i = 0; i < xml.childNodes.length; i ++ ) { const child = xml.childNodes[ i ]; switch ( child.nodeName ) { case 'bind_material': const instances = child.getElementsByTagName( 'instance_material' ); for ( let j = 0; j < instances.length; j ++ ) { const instance = instances[ j ]; const symbol = instance.getAttribute( 'symbol' ); const target = instance.getAttribute( 'target' ); data.materials[ symbol ] = parseId( target ); } break; case 'skeleton': data.skeletons.push( parseId( child.textContent ) ); break; default: break; } } return data; } function buildSkeleton( skeletons, joints ) { const boneData = []; const sortedBoneData = []; let i, j, data; // a skeleton can have multiple root bones. collada expresses this // situtation with multiple "skeleton" tags per controller instance for ( i = 0; i < skeletons.length; i ++ ) { const skeleton = skeletons[ i ]; let root; if ( hasNode( skeleton ) ) { root = getNode( skeleton ); buildBoneHierarchy( root, joints, boneData ); } else if ( hasVisualScene( skeleton ) ) { // handle case where the skeleton refers to the visual scene (#13335) const visualScene = library.visualScenes[ skeleton ]; const children = visualScene.children; for ( let j = 0; j < children.length; j ++ ) { const child = children[ j ]; if ( child.type === 'JOINT' ) { const root = getNode( child.id ); buildBoneHierarchy( root, joints, boneData ); } } } else { console.error( 'THREE.ColladaLoader: Unable to find root bone of skeleton with ID:', skeleton ); } } // sort bone data (the order is defined in the corresponding controller) for ( i = 0; i < joints.length; i ++ ) { for ( j = 0; j < boneData.length; j ++ ) { data = boneData[ j ]; if ( data.bone.name === joints[ i ].name ) { sortedBoneData[ i ] = data; data.processed = true; break; } } } // add unprocessed bone data at the end of the list for ( i = 0; i < boneData.length; i ++ ) { data = boneData[ i ]; if ( data.processed === false ) { sortedBoneData.push( data ); data.processed = true; } } // setup arrays for skeleton creation const bones = []; const boneInverses = []; for ( i = 0; i < sortedBoneData.length; i ++ ) { data = sortedBoneData[ i ]; bones.push( data.bone ); boneInverses.push( data.boneInverse ); } return new Skeleton( bones, boneInverses ); } function buildBoneHierarchy( root, joints, boneData ) { // setup bone data from visual scene root.traverse( function ( object ) { if ( object.isBone === true ) { let boneInverse; // retrieve the boneInverse from the controller data for ( let i = 0; i < joints.length; i ++ ) { const joint = joints[ i ]; if ( joint.name === object.name ) { boneInverse = joint.boneInverse; break; } } if ( boneInverse === undefined ) { // Unfortunately, there can be joints in the visual scene that are not part of the // corresponding controller. In this case, we have to create a dummy boneInverse matrix // for the respective bone. This bone won't affect any vertices, because there are no skin indices // and weights defined for it. But we still have to add the bone to the sorted bone list in order to // ensure a correct animation of the model. boneInverse = new Matrix4(); } boneData.push( { bone: object, boneInverse: boneInverse, processed: false } ); } } ); } function buildNode( data ) { const objects = []; const matrix = data.matrix; const nodes = data.nodes; const type = data.type; const instanceCameras = data.instanceCameras; const instanceControllers = data.instanceControllers; const instanceLights = data.instanceLights; const instanceGeometries = data.instanceGeometries; const instanceNodes = data.instanceNodes; // nodes for ( let i = 0, l = nodes.length; i < l; i ++ ) { objects.push( getNode( nodes[ i ] ) ); } // instance cameras for ( let i = 0, l = instanceCameras.length; i < l; i ++ ) { const instanceCamera = getCamera( instanceCameras[ i ] ); if ( instanceCamera !== null ) { objects.push( instanceCamera.clone() ); } } // instance controllers for ( let i = 0, l = instanceControllers.length; i < l; i ++ ) { const instance = instanceControllers[ i ]; const controller = getController( instance.id ); const geometries = getGeometry( controller.id ); const newObjects = buildObjects( geometries, instance.materials ); const skeletons = instance.skeletons; const joints = controller.skin.joints; const skeleton = buildSkeleton( skeletons, joints ); for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) { const object = newObjects[ j ]; if ( object.isSkinnedMesh ) { object.bind( skeleton, controller.skin.bindMatrix ); object.normalizeSkinWeights(); } objects.push( object ); } } // instance lights for ( let i = 0, l = instanceLights.length; i < l; i ++ ) { const instanceLight = getLight( instanceLights[ i ] ); if ( instanceLight !== null ) { objects.push( instanceLight.clone() ); } } // instance geometries for ( let i = 0, l = instanceGeometries.length; i < l; i ++ ) { const instance = instanceGeometries[ i ]; // a single geometry instance in collada can lead to multiple object3Ds. // this is the case when primitives are combined like triangles and lines const geometries = getGeometry( instance.id ); const newObjects = buildObjects( geometries, instance.materials ); for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) { objects.push( newObjects[ j ] ); } } // instance nodes for ( let i = 0, l = instanceNodes.length; i < l; i ++ ) { objects.push( getNode( instanceNodes[ i ] ).clone() ); } let object; if ( nodes.length === 0 && objects.length === 1 ) { object = objects[ 0 ]; } else { object = ( type === 'JOINT' ) ? new Bone() : new Group(); for ( let i = 0; i < objects.length; i ++ ) { object.add( objects[ i ] ); } } object.name = ( type === 'JOINT' ) ? data.sid : data.name; object.matrix.copy( matrix ); object.matrix.decompose( object.position, object.quaternion, object.scale ); return object; } const fallbackMaterial = new MeshBasicMaterial( { color: 0xff00ff } ); function resolveMaterialBinding( keys, instanceMaterials ) { const materials = []; for ( let i = 0, l = keys.length; i < l; i ++ ) { const id = instanceMaterials[ keys[ i ] ]; if ( id === undefined ) { console.warn( 'THREE.ColladaLoader: Material with key %s not found. Apply fallback material.', keys[ i ] ); materials.push( fallbackMaterial ); } else { materials.push( getMaterial( id ) ); } } return materials; } function buildObjects( geometries, instanceMaterials ) { const objects = []; for ( const type in geometries ) { const geometry = geometries[ type ]; const materials = resolveMaterialBinding( geometry.materialKeys, instanceMaterials ); // handle case if no materials are defined if ( materials.length === 0 ) { if ( type === 'lines' || type === 'linestrips' ) { materials.push( new LineBasicMaterial() ); } else { materials.push( new MeshPhongMaterial() ); } } // regard skinning const skinning = ( geometry.data.attributes.skinIndex !== undefined ); // choose between a single or multi materials (material array) const material = ( materials.length === 1 ) ? materials[ 0 ] : materials; // now create a specific 3D object let object; switch ( type ) { case 'lines': object = new LineSegments( geometry.data, material ); break; case 'linestrips': object = new Line( geometry.data, material ); break; case 'triangles': case 'polylist': if ( skinning ) { object = new SkinnedMesh( geometry.data, material ); } else { object = new Mesh( geometry.data, material ); } break; } objects.push( object ); } return objects; } function hasNode( id ) { return library.nodes[ id ] !== undefined; } function getNode( id ) { return getBuild( library.nodes[ id ], buildNode ); } // visual scenes function parseVisualScene( xml ) { const data = { name: xml.getAttribute( 'name' ), children: [] }; prepareNodes( xml ); const elements = getElementsByTagName( xml, 'node' ); for ( let i = 0; i < elements.length; i ++ ) { data.children.push( parseNode( elements[ i ] ) ); } library.visualScenes[ xml.getAttribute( 'id' ) ] = data; } function buildVisualScene( data ) { const group = new Group(); group.name = data.name; const children = data.children; for ( let i = 0; i < children.length; i ++ ) { const child = children[ i ]; group.add( getNode( child.id ) ); } return group; } function hasVisualScene( id ) { return library.visualScenes[ id ] !== undefined; } function getVisualScene( id ) { return getBuild( library.visualScenes[ id ], buildVisualScene ); } // scenes function parseScene( xml ) { const instance = getElementsByTagName( xml, 'instance_visual_scene' )[ 0 ]; return getVisualScene( parseId( instance.getAttribute( 'url' ) ) ); } function setupAnimations() { const clips = library.clips; if ( isEmpty( clips ) === true ) { if ( isEmpty( library.animations ) === false ) { // if there are animations but no clips, we create a default clip for playback const tracks = []; for ( const id in library.animations ) { const animationTracks = getAnimation( id ); for ( let i = 0, l = animationTracks.length; i < l; i ++ ) { tracks.push( animationTracks[ i ] ); } } animations.push( new AnimationClip( 'default', - 1, tracks ) ); } } else { for ( const id in clips ) { animations.push( getAnimationClip( id ) ); } } } // convert the parser error element into text with each child elements text // separated by new lines. function parserErrorToText( parserError ) { let result = ''; const stack = [ parserError ]; while ( stack.length ) { const node = stack.shift(); if ( node.nodeType === Node.TEXT_NODE ) { result += node.textContent; } else { result += '\n'; stack.push.apply( stack, node.childNodes ); } } return result.trim(); } if ( text.length === 0 ) { return { scene: new Scene() }; } const xml = new DOMParser().parseFromString( text, 'application/xml' ); const collada = getElementsByTagName( xml, 'COLLADA' )[ 0 ]; const parserError = xml.getElementsByTagName( 'parsererror' )[ 0 ]; if ( parserError !== undefined ) { // Chrome will return parser error with a div in it const errorElement = getElementsByTagName( parserError, 'div' )[ 0 ]; let errorText; if ( errorElement ) { errorText = errorElement.textContent; } else { errorText = parserErrorToText( parserError ); } console.error( 'THREE.ColladaLoader: Failed to parse collada file.\n', errorText ); return null; } // metadata const version = collada.getAttribute( 'version' ); console.log( 'THREE.ColladaLoader: File version', version ); const asset = parseAsset( getElementsByTagName( collada, 'asset' )[ 0 ] ); const textureLoader = new TextureLoader( this.manager ); textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin ); let tgaLoader; if ( TGALoader ) { tgaLoader = new TGALoader( this.manager ); tgaLoader.setPath( this.resourcePath || path ); } // const tempColor = new Color(); const animations = []; let kinematics = {}; let count = 0; // const library = { animations: {}, clips: {}, controllers: {}, images: {}, effects: {}, materials: {}, cameras: {}, lights: {}, geometries: {}, nodes: {}, visualScenes: {}, kinematicsModels: {}, physicsModels: {}, kinematicsScenes: {} }; parseLibrary( collada, 'library_animations', 'animation', parseAnimation ); parseLibrary( collada, 'library_animation_clips', 'animation_clip', parseAnimationClip ); parseLibrary( collada, 'library_controllers', 'controller', parseController ); parseLibrary( collada, 'library_images', 'image', parseImage ); parseLibrary( collada, 'library_effects', 'effect', parseEffect ); parseLibrary( collada, 'library_materials', 'material', parseMaterial ); parseLibrary( collada, 'library_cameras', 'camera', parseCamera ); parseLibrary( collada, 'library_lights', 'light', parseLight ); parseLibrary( collada, 'library_geometries', 'geometry', parseGeometry ); parseLibrary( collada, 'library_nodes', 'node', parseNode ); parseLibrary( collada, 'library_visual_scenes', 'visual_scene', parseVisualScene ); parseLibrary( collada, 'library_kinematics_models', 'kinematics_model', parseKinematicsModel ); parseLibrary( collada, 'library_physics_models', 'physics_model', parsePhysicsModel ); parseLibrary( collada, 'scene', 'instance_kinematics_scene', parseKinematicsScene ); buildLibrary( library.animations, buildAnimation ); buildLibrary( library.clips, buildAnimationClip ); buildLibrary( library.controllers, buildController ); buildLibrary( library.images, buildImage ); buildLibrary( library.effects, buildEffect ); buildLibrary( library.materials, buildMaterial ); buildLibrary( library.cameras, buildCamera ); buildLibrary( library.lights, buildLight ); buildLibrary( library.geometries, buildGeometry ); buildLibrary( library.visualScenes, buildVisualScene ); setupAnimations(); setupKinematics(); const scene = parseScene( getElementsByTagName( collada, 'scene' )[ 0 ] ); scene.animations = animations; if ( asset.upAxis === 'Z_UP' ) { console.warn( 'THREE.ColladaLoader: You are loading an asset with a Z-UP coordinate system. The loader just rotates the asset to transform it into Y-UP. The vertex data are not converted, see #24289.' ); scene.quaternion.setFromEuler( new Euler( - Math.PI / 2, 0, 0 ) ); } scene.scale.multiplyScalar( asset.unit ); return { get animations() { console.warn( 'THREE.ColladaLoader: Please access animations over scene.animations now.' ); return animations; }, kinematics: kinematics, library: library, scene: scene }; } } export { ColladaLoader };