import { BufferGeometry, Float32BufferAttribute, Matrix4, Vector3 } from 'three'; /** * You can use this geometry to create a decal mesh, that serves different kinds of purposes. * e.g. adding unique details to models, performing dynamic visual environmental changes or covering seams. * * Constructor parameter: * * mesh — Any mesh object * position — Position of the decal projector * orientation — Orientation of the decal projector * size — Size of the decal projector * * reference: http://blog.wolfire.com/2009/06/how-to-project-decals/ * */ class DecalGeometry extends BufferGeometry { constructor( mesh, position, orientation, size ) { super(); // buffers const vertices = []; const normals = []; const uvs = []; // helpers const plane = new Vector3(); // this matrix represents the transformation of the decal projector const projectorMatrix = new Matrix4(); projectorMatrix.makeRotationFromEuler( orientation ); projectorMatrix.setPosition( position ); const projectorMatrixInverse = new Matrix4(); projectorMatrixInverse.copy( projectorMatrix ).invert(); // generate buffers generate(); // build geometry this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generate() { let decalVertices = []; const vertex = new Vector3(); const normal = new Vector3(); // handle different geometry types const geometry = mesh.geometry; const positionAttribute = geometry.attributes.position; const normalAttribute = geometry.attributes.normal; // first, create an array of 'DecalVertex' objects // three consecutive 'DecalVertex' objects represent a single face // // this data structure will be later used to perform the clipping if ( geometry.index !== null ) { // indexed BufferGeometry const index = geometry.index; for ( let i = 0; i < index.count; i ++ ) { vertex.fromBufferAttribute( positionAttribute, index.getX( i ) ); normal.fromBufferAttribute( normalAttribute, index.getX( i ) ); pushDecalVertex( decalVertices, vertex, normal ); } } else { // non-indexed BufferGeometry for ( let i = 0; i < positionAttribute.count; i ++ ) { vertex.fromBufferAttribute( positionAttribute, i ); normal.fromBufferAttribute( normalAttribute, i ); pushDecalVertex( decalVertices, vertex, normal ); } } // second, clip the geometry so that it doesn't extend out from the projector decalVertices = clipGeometry( decalVertices, plane.set( 1, 0, 0 ) ); decalVertices = clipGeometry( decalVertices, plane.set( - 1, 0, 0 ) ); decalVertices = clipGeometry( decalVertices, plane.set( 0, 1, 0 ) ); decalVertices = clipGeometry( decalVertices, plane.set( 0, - 1, 0 ) ); decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, 1 ) ); decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, - 1 ) ); // third, generate final vertices, normals and uvs for ( let i = 0; i < decalVertices.length; i ++ ) { const decalVertex = decalVertices[ i ]; // create texture coordinates (we are still in projector space) uvs.push( 0.5 + ( decalVertex.position.x / size.x ), 0.5 + ( decalVertex.position.y / size.y ) ); // transform the vertex back to world space decalVertex.position.applyMatrix4( projectorMatrix ); // now create vertex and normal buffer data vertices.push( decalVertex.position.x, decalVertex.position.y, decalVertex.position.z ); normals.push( decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z ); } } function pushDecalVertex( decalVertices, vertex, normal ) { // transform the vertex to world space, then to projector space vertex.applyMatrix4( mesh.matrixWorld ); vertex.applyMatrix4( projectorMatrixInverse ); normal.transformDirection( mesh.matrixWorld ); decalVertices.push( new DecalVertex( vertex.clone(), normal.clone() ) ); } function clipGeometry( inVertices, plane ) { const outVertices = []; const s = 0.5 * Math.abs( size.dot( plane ) ); // a single iteration clips one face, // which consists of three consecutive 'DecalVertex' objects for ( let i = 0; i < inVertices.length; i += 3 ) { let total = 0; let nV1; let nV2; let nV3; let nV4; const d1 = inVertices[ i + 0 ].position.dot( plane ) - s; const d2 = inVertices[ i + 1 ].position.dot( plane ) - s; const d3 = inVertices[ i + 2 ].position.dot( plane ) - s; const v1Out = d1 > 0; const v2Out = d2 > 0; const v3Out = d3 > 0; // calculate, how many vertices of the face lie outside of the clipping plane total = ( v1Out ? 1 : 0 ) + ( v2Out ? 1 : 0 ) + ( v3Out ? 1 : 0 ); switch ( total ) { case 0: { // the entire face lies inside of the plane, no clipping needed outVertices.push( inVertices[ i ] ); outVertices.push( inVertices[ i + 1 ] ); outVertices.push( inVertices[ i + 2 ] ); break; } case 1: { // one vertex lies outside of the plane, perform clipping if ( v1Out ) { nV1 = inVertices[ i + 1 ]; nV2 = inVertices[ i + 2 ]; nV3 = clip( inVertices[ i ], nV1, plane, s ); nV4 = clip( inVertices[ i ], nV2, plane, s ); } if ( v2Out ) { nV1 = inVertices[ i ]; nV2 = inVertices[ i + 2 ]; nV3 = clip( inVertices[ i + 1 ], nV1, plane, s ); nV4 = clip( inVertices[ i + 1 ], nV2, plane, s ); outVertices.push( nV3 ); outVertices.push( nV2.clone() ); outVertices.push( nV1.clone() ); outVertices.push( nV2.clone() ); outVertices.push( nV3.clone() ); outVertices.push( nV4 ); break; } if ( v3Out ) { nV1 = inVertices[ i ]; nV2 = inVertices[ i + 1 ]; nV3 = clip( inVertices[ i + 2 ], nV1, plane, s ); nV4 = clip( inVertices[ i + 2 ], nV2, plane, s ); } outVertices.push( nV1.clone() ); outVertices.push( nV2.clone() ); outVertices.push( nV3 ); outVertices.push( nV4 ); outVertices.push( nV3.clone() ); outVertices.push( nV2.clone() ); break; } case 2: { // two vertices lies outside of the plane, perform clipping if ( ! v1Out ) { nV1 = inVertices[ i ].clone(); nV2 = clip( nV1, inVertices[ i + 1 ], plane, s ); nV3 = clip( nV1, inVertices[ i + 2 ], plane, s ); outVertices.push( nV1 ); outVertices.push( nV2 ); outVertices.push( nV3 ); } if ( ! v2Out ) { nV1 = inVertices[ i + 1 ].clone(); nV2 = clip( nV1, inVertices[ i + 2 ], plane, s ); nV3 = clip( nV1, inVertices[ i ], plane, s ); outVertices.push( nV1 ); outVertices.push( nV2 ); outVertices.push( nV3 ); } if ( ! v3Out ) { nV1 = inVertices[ i + 2 ].clone(); nV2 = clip( nV1, inVertices[ i ], plane, s ); nV3 = clip( nV1, inVertices[ i + 1 ], plane, s ); outVertices.push( nV1 ); outVertices.push( nV2 ); outVertices.push( nV3 ); } break; } case 3: { // the entire face lies outside of the plane, so let's discard the corresponding vertices break; } } } return outVertices; } function clip( v0, v1, p, s ) { const d0 = v0.position.dot( p ) - s; const d1 = v1.position.dot( p ) - s; const s0 = d0 / ( d0 - d1 ); const v = new DecalVertex( new Vector3( v0.position.x + s0 * ( v1.position.x - v0.position.x ), v0.position.y + s0 * ( v1.position.y - v0.position.y ), v0.position.z + s0 * ( v1.position.z - v0.position.z ) ), new Vector3( v0.normal.x + s0 * ( v1.normal.x - v0.normal.x ), v0.normal.y + s0 * ( v1.normal.y - v0.normal.y ), v0.normal.z + s0 * ( v1.normal.z - v0.normal.z ) ) ); // need to clip more values (texture coordinates)? do it this way: // intersectpoint.value = a.value + s * ( b.value - a.value ); return v; } } } // helper class DecalVertex { constructor( position, normal ) { this.position = position; this.normal = normal; } clone() { return new this.constructor( this.position.clone(), this.normal.clone() ); } } export { DecalGeometry, DecalVertex };