You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

550 lines
15 KiB

2 years ago
( function () {
/**
* Octahedron and Quantization encodings based on work by:
*
* @link https://github.com/tsherif/mesh-quantization-example
*
*/
/**
* Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data.
*
* @param {THREE.Mesh} mesh
* @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES"
*
*/
function compressNormals( mesh, encodeMethod ) {
if ( ! mesh.geometry ) {
console.error( 'Mesh must contain geometry. ' );
}
const normal = mesh.geometry.attributes.normal;
if ( ! normal ) {
console.error( 'Geometry must contain normal attribute. ' );
}
if ( normal.isPacked ) return;
if ( normal.itemSize != 3 ) {
console.error( 'normal.itemSize is not 3, which cannot be encoded. ' );
}
const array = normal.array;
const count = normal.count;
let result;
if ( encodeMethod == 'DEFAULT' ) {
// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.
result = new Uint8Array( count * 3 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
result[ idx + 0 ] = encoded[ 0 ];
result[ idx + 1 ] = encoded[ 1 ];
result[ idx + 2 ] = encoded[ 2 ];
}
mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 3, true ) );
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if ( encodeMethod == 'OCT1Byte' ) {
/**
* It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage
* As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible
* Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208
*/
result = new Int8Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if ( encodeMethod == 'OCT2Byte' ) {
result = new Int16Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else if ( encodeMethod == 'ANGLES' ) {
result = new Uint16Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else {
console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' );
}
mesh.geometry.attributes.normal.needsUpdate = true;
mesh.geometry.attributes.normal.isPacked = true;
mesh.geometry.attributes.normal.packingMethod = encodeMethod;
// modify material
if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {
mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );
}
if ( encodeMethod == 'ANGLES' ) {
mesh.material.defines.USE_PACKED_NORMAL = 0;
}
if ( encodeMethod == 'OCT1Byte' ) {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if ( encodeMethod == 'OCT2Byte' ) {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if ( encodeMethod == 'DEFAULT' ) {
mesh.material.defines.USE_PACKED_NORMAL = 2;
}
}
/**
* Make the input mesh.geometry's position attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.
*
* @param {THREE.Mesh} mesh
*
*/
function compressPositions( mesh ) {
if ( ! mesh.geometry ) {
console.error( 'Mesh must contain geometry. ' );
}
const position = mesh.geometry.attributes.position;
if ( ! position ) {
console.error( 'Geometry must contain position attribute. ' );
}
if ( position.isPacked ) return;
if ( position.itemSize != 3 ) {
console.error( 'position.itemSize is not 3, which cannot be packed. ' );
}
const array = position.array;
const encodingBytes = 2;
const result = quantizedEncode( array, encodingBytes );
const quantized = result.quantized;
const decodeMat = result.decodeMat;
// IMPORTANT: calculate original geometry bounding info first, before updating packed positions
if ( mesh.geometry.boundingBox == null ) mesh.geometry.computeBoundingBox();
if ( mesh.geometry.boundingSphere == null ) mesh.geometry.computeBoundingSphere();
mesh.geometry.setAttribute( 'position', new THREE.BufferAttribute( quantized, 3 ) );
mesh.geometry.attributes.position.isPacked = true;
mesh.geometry.attributes.position.needsUpdate = true;
mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes;
// modify material
if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {
mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );
}
mesh.material.defines.USE_PACKED_POSITION = 0;
mesh.material.uniforms.quantizeMatPos.value = decodeMat;
mesh.material.uniforms.quantizeMatPos.needsUpdate = true;
}
/**
* Make the input mesh.geometry's uv attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data.
*
* @param {THREE.Mesh} mesh
*
*/
function compressUvs( mesh ) {
if ( ! mesh.geometry ) {
console.error( 'Mesh must contain geometry property. ' );
}
const uvs = mesh.geometry.attributes.uv;
if ( ! uvs ) {
console.error( 'Geometry must contain uv attribute. ' );
}
if ( uvs.isPacked ) return;
const range = {
min: Infinity,
max: - Infinity
};
const array = uvs.array;
for ( let i = 0; i < array.length; i ++ ) {
range.min = Math.min( range.min, array[ i ] );
range.max = Math.max( range.max, array[ i ] );
}
let result;
if ( range.min >= - 1.0 && range.max <= 1.0 ) {
// use default encoding method
result = new Uint16Array( array.length );
for ( let i = 0; i < array.length; i += 2 ) {
const encoded = defaultEncode( array[ i ], array[ i + 1 ], 0, 2 );
result[ i ] = encoded[ 0 ];
result[ i + 1 ] = encoded[ 1 ];
}
mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result, 2, true ) );
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.length * 2;
if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {
mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );
}
mesh.material.defines.USE_PACKED_UV = 0;
} else {
// use quantized encoding method
result = quantizedEncodeUV( array, 2 );
mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result.quantized, 2 ) );
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;
if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {
mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );
}
mesh.material.defines.USE_PACKED_UV = 1;
mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;
mesh.material.uniforms.quantizeMatUV.needsUpdate = true;
}
}
// Encoding functions
function defaultEncode( x, y, z, bytes ) {
if ( bytes == 1 ) {
const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 );
const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 );
const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 );
return new Uint8Array( [ tmpx, tmpy, tmpz ] );
} else if ( bytes == 2 ) {
const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 );
const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 );
const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 );
return new Uint16Array( [ tmpx, tmpy, tmpz ] );
} else {
console.error( 'number of bytes must be 1 or 2' );
}
}
// for `Angles` encoding
function anglesEncode( x, y, z ) {
const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 );
const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 );
return new Uint16Array( [ normal0, normal1 ] );
}
// for `Octahedron` encoding
function octEncodeBest( x, y, z, bytes ) {
let oct, dec, best, currentCos, bestCos;
// Test various combinations of ceil and floor
// to minimize rounding errors
best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' );
dec = octDecodeVec2( oct );
bestCos = dot( x, y, z, dec );
oct = octEncodeVec3( x, y, z, 'ceil', 'floor' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3( x, y, z, 'floor', 'ceil' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
}
return best;
function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {
let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
if ( z < 0 ) {
const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );
x = tempx;
y = tempy;
let diff = 1 - Math.abs( x ) - Math.abs( y );
if ( diff > 0 ) {
diff += 0.001;
x += x > 0 ? diff / 2 : - diff / 2;
y += y > 0 ? diff / 2 : - diff / 2;
}
}
if ( bytes == 1 ) {
return new Int8Array( [ Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) ) ] );
}
if ( bytes == 2 ) {
return new Int16Array( [ Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) ) ] );
}
}
function octDecodeVec2( oct ) {
let x = oct[ 0 ];
let y = oct[ 1 ];
if ( bytes == 1 ) {
x /= x < 0 ? 127 : 128;
y /= y < 0 ? 127 : 128;
} else if ( bytes == 2 ) {
x /= x < 0 ? 32767 : 32768;
y /= y < 0 ? 32767 : 32768;
}
const z = 1 - Math.abs( x ) - Math.abs( y );
if ( z < 0 ) {
const tmpx = x;
x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );
}
const length = Math.sqrt( x * x + y * y + z * z );
return [ x / length, y / length, z / length ];
}
function dot( x, y, z, vec3 ) {
return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ];
}
}
function quantizedEncode( array, bytes ) {
let quantized, segments;
if ( bytes == 1 ) {
quantized = new Uint8Array( array.length );
segments = 255;
} else if ( bytes == 2 ) {
quantized = new Uint16Array( array.length );
segments = 65535;
} else {
console.error( 'number of bytes error! ' );
}
const decodeMat = new THREE.Matrix4();
const min = new Float32Array( 3 );
const max = new Float32Array( 3 );
min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE;
max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE;
for ( let i = 0; i < array.length; i += 3 ) {
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] );
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] );
}
decodeMat.scale( new THREE.Vector3( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments, ( max[ 2 ] - min[ 2 ] ) / segments ) );
decodeMat.elements[ 12 ] = min[ 0 ];
decodeMat.elements[ 13 ] = min[ 1 ];
decodeMat.elements[ 14 ] = min[ 2 ];
decodeMat.transpose();
const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0, max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0 ] );
for ( let i = 0; i < array.length; i += 3 ) {
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] );
}
return {
quantized: quantized,
decodeMat: decodeMat
};
}
function quantizedEncodeUV( array, bytes ) {
let quantized, segments;
if ( bytes == 1 ) {
quantized = new Uint8Array( array.length );
segments = 255;
} else if ( bytes == 2 ) {
quantized = new Uint16Array( array.length );
segments = 65535;
} else {
console.error( 'number of bytes error! ' );
}
const decodeMat = new THREE.Matrix3();
const min = new Float32Array( 2 );
const max = new Float32Array( 2 );
min[ 0 ] = min[ 1 ] = Number.MAX_VALUE;
max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE;
for ( let i = 0; i < array.length; i += 2 ) {
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
}
decodeMat.scale( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments );
decodeMat.elements[ 6 ] = min[ 0 ];
decodeMat.elements[ 7 ] = min[ 1 ];
decodeMat.transpose();
const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0 ] );
for ( let i = 0; i < array.length; i += 2 ) {
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
}
return {
quantized: quantized,
decodeMat: decodeMat
};
}
THREE.GeometryCompressionUtils = {};
THREE.GeometryCompressionUtils.compressNormals = compressNormals;
THREE.GeometryCompressionUtils.compressPositions = compressPositions;
THREE.GeometryCompressionUtils.compressUvs = compressUvs;
} )();