You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4109 lines
110 KiB

2 years ago
( function () {
class GLTFLoader extends THREE.Loader {
constructor( manager ) {
super( manager );
this.dracoLoader = null;
this.ktx2Loader = null;
this.meshoptDecoder = null;
this.pluginCallbacks = [];
this.register( function ( parser ) {
return new GLTFMaterialsClearcoatExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFTextureBasisUExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFTextureWebPExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsSheenExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsTransmissionExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsVolumeExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsIorExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsEmissiveStrengthExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsSpecularExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsIridescenceExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFLightsExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMeshoptCompression( parser );
} );
this.register( function ( parser ) {
return new GLTFMeshGpuInstancing( parser );
} );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
let resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
resourcePath = this.path;
} else {
resourcePath = THREE.LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
this.manager.itemStart( url );
const _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
const loader = new THREE.FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
}
setDRACOLoader( dracoLoader ) {
this.dracoLoader = dracoLoader;
return this;
}
setDDSLoader() {
throw new Error( 'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".' );
}
setKTX2Loader( ktx2Loader ) {
this.ktx2Loader = ktx2Loader;
return this;
}
setMeshoptDecoder( meshoptDecoder ) {
this.meshoptDecoder = meshoptDecoder;
return this;
}
register( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
this.pluginCallbacks.push( callback );
}
return this;
}
unregister( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
}
return this;
}
parse( data, path, onLoad, onError ) {
let json;
const extensions = {};
const plugins = {};
if ( typeof data === 'string' ) {
json = JSON.parse( data );
} else if ( data instanceof ArrayBuffer ) {
const magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content );
} else {
json = JSON.parse( THREE.LoaderUtils.decodeText( new Uint8Array( data ) ) );
}
} else {
json = data;
}
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
return;
}
const parser = new GLTFParser( json, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
requestHeader: this.requestHeader,
manager: this.manager,
ktx2Loader: this.ktx2Loader,
meshoptDecoder: this.meshoptDecoder
} );
parser.fileLoader.setRequestHeader( this.requestHeader );
for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
const plugin = this.pluginCallbacks[ i ]( parser );
plugins[ plugin.name ] = plugin;
// Workaround to avoid determining as unknown extension
// in addUnknownExtensionsToUserData().
// Remove this workaround if we move all the existing
// extension handlers to plugin system
extensions[ plugin.name ] = true;
}
if ( json.extensionsUsed ) {
for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
const extensionName = json.extensionsUsed[ i ];
const extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ extensionName ] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
parser.setExtensions( extensions );
parser.setPlugins( plugins );
parser.parse( onLoad, onError );
}
parseAsync( data, path ) {
const scope = this;
return new Promise( function ( resolve, reject ) {
scope.parse( data, path, resolve, reject );
} );
}
}
/* GLTFREGISTRY */
function GLTFRegistry() {
let objects = {};
return {
get: function ( key ) {
return objects[ key ];
},
add: function ( key, object ) {
objects[ key ] = object;
},
remove: function ( key ) {
delete objects[ key ];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
const EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
KHR_MATERIALS_IOR: 'KHR_materials_ior',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_SHEEN: 'KHR_materials_sheen',
KHR_MATERIALS_SPECULAR: 'KHR_materials_specular',
KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission',
KHR_MATERIALS_IRIDESCENCE: 'KHR_materials_iridescence',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
KHR_MATERIALS_VOLUME: 'KHR_materials_volume',
KHR_TEXTURE_BASISU: 'KHR_texture_basisu',
KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
KHR_MATERIALS_EMISSIVE_STRENGTH: 'KHR_materials_emissive_strength',
EXT_TEXTURE_WEBP: 'EXT_texture_webp',
EXT_MESHOPT_COMPRESSION: 'EXT_meshopt_compression',
EXT_MESH_GPU_INSTANCING: 'EXT_mesh_gpu_instancing'
};
/**
* Punctual Lights Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
*/
class GLTFLightsExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
// THREE.Object3D instance caches
this.cache = {
refs: {},
uses: {}
};
}
_markDefs() {
const parser = this.parser;
const nodeDefs = this.parser.json.nodes || [];
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.extensions && nodeDef.extensions[ this.name ] && nodeDef.extensions[ this.name ].light !== undefined ) {
parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
}
}
}
_loadLight( lightIndex ) {
const parser = this.parser;
const cacheKey = 'light:' + lightIndex;
let dependency = parser.cache.get( cacheKey );
if ( dependency ) return dependency;
const json = parser.json;
const extensions = json.extensions && json.extensions[ this.name ] || {};
const lightDefs = extensions.lights || [];
const lightDef = lightDefs[ lightIndex ];
let lightNode;
const color = new THREE.Color( 0xffffff );
if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );
const range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new THREE.DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new THREE.PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new THREE.SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
lightNode.decay = 2;
assignExtrasToUserData( lightNode, lightDef );
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = parser.createUniqueName( lightDef.name || 'light_' + lightIndex );
dependency = Promise.resolve( lightNode );
parser.cache.add( cacheKey, dependency );
return dependency;
}
getDependency( type, index ) {
if ( type !== 'light' ) return;
return this._loadLight( index );
}
createNodeAttachment( nodeIndex ) {
const self = this;
const parser = this.parser;
const json = parser.json;
const nodeDef = json.nodes[ nodeIndex ];
const lightDef = nodeDef.extensions && nodeDef.extensions[ this.name ] || {};
const lightIndex = lightDef.light;
if ( lightIndex === undefined ) return null;
return this._loadLight( lightIndex ).then( function ( light ) {
return parser._getNodeRef( self.cache, lightIndex, light );
} );
}
}
/**
* Unlit Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
*/
class GLTFMaterialsUnlitExtension {
constructor() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
getMaterialType() {
return THREE.MeshBasicMaterial;
}
extendParams( materialParams, materialDef, parser ) {
const pending = [];
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
const metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, THREE.sRGBEncoding ) );
}
}
return Promise.all( pending );
}
}
/**
* Materials Emissive Strength Extension
*
* Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md
*/
class GLTFMaterialsEmissiveStrengthExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength;
if ( emissiveStrength !== undefined ) {
materialParams.emissiveIntensity = emissiveStrength;
}
return Promise.resolve();
}
}
/**
* Clearcoat Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
*/
class GLTFMaterialsClearcoatExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.clearcoatFactor !== undefined ) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if ( extension.clearcoatTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
}
if ( extension.clearcoatRoughnessFactor !== undefined ) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if ( extension.clearcoatRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
}
if ( extension.clearcoatNormalTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
const scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new THREE.Vector2( scale, scale );
}
}
return Promise.all( pending );
}
}
/**
* Iridescence Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence
*/
class GLTFMaterialsIridescenceExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.iridescenceFactor !== undefined ) {
materialParams.iridescence = extension.iridescenceFactor;
}
if ( extension.iridescenceTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) );
}
if ( extension.iridescenceIor !== undefined ) {
materialParams.iridescenceIOR = extension.iridescenceIor;
}
if ( materialParams.iridescenceThicknessRange === undefined ) {
materialParams.iridescenceThicknessRange = [ 100, 400 ];
}
if ( extension.iridescenceThicknessMinimum !== undefined ) {
materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum;
}
if ( extension.iridescenceThicknessMaximum !== undefined ) {
materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum;
}
if ( extension.iridescenceThicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) );
}
return Promise.all( pending );
}
}
/**
* Sheen Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen
*/
class GLTFMaterialsSheenExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SHEEN;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
materialParams.sheenColor = new THREE.Color( 0, 0, 0 );
materialParams.sheenRoughness = 0;
materialParams.sheen = 1;
const extension = materialDef.extensions[ this.name ];
if ( extension.sheenColorFactor !== undefined ) {
materialParams.sheenColor.fromArray( extension.sheenColorFactor );
}
if ( extension.sheenRoughnessFactor !== undefined ) {
materialParams.sheenRoughness = extension.sheenRoughnessFactor;
}
if ( extension.sheenColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, THREE.sRGBEncoding ) );
}
if ( extension.sheenRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) );
}
return Promise.all( pending );
}
}
/**
* Transmission Materials Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission
* Draft: https://github.com/KhronosGroup/glTF/pull/1698
*/
class GLTFMaterialsTransmissionExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.transmissionFactor !== undefined ) {
materialParams.transmission = extension.transmissionFactor;
}
if ( extension.transmissionTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
}
return Promise.all( pending );
}
}
/**
* Materials Volume Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume
*/
class GLTFMaterialsVolumeExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_VOLUME;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0;
if ( extension.thicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) );
}
materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
const colorArray = extension.attenuationColor || [ 1, 1, 1 ];
materialParams.attenuationColor = new THREE.Color( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ] );
return Promise.all( pending );
}
}
/**
* Materials ior Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior
*/
class GLTFMaterialsIorExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IOR;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5;
return Promise.resolve();
}
}
/**
* Materials specular Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular
*/
class GLTFMaterialsSpecularExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return THREE.MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0;
if ( extension.specularTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) );
}
const colorArray = extension.specularColorFactor || [ 1, 1, 1 ];
materialParams.specularColor = new THREE.Color( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ] );
if ( extension.specularColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, THREE.sRGBEncoding ) );
}
return Promise.all( pending );
}
}
/**
* BasisU THREE.Texture Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu
*/
class GLTFTextureBasisUExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_TEXTURE_BASISU;
}
loadTexture( textureIndex ) {
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
return null;
}
const extension = textureDef.extensions[ this.name ];
const loader = parser.options.ktx2Loader;
if ( ! loader ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
} else {
// Assumes that the extension is optional and that a fallback texture is present
return null;
}
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
}
/**
* WebP THREE.Texture Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_texture_webp
*/
class GLTFTextureWebPExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.EXT_TEXTURE_WEBP;
this.isSupported = null;
}
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return this.detectSupport().then( function ( isSupported ) {
if ( isSupported ) return parser.loadTextureImage( textureIndex, extension.source, loader );
if ( json.extensionsRequired && json.extensionsRequired.indexOf( name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: WebP required by asset but unsupported.' );
}
// Fall back to PNG or JPEG.
return parser.loadTexture( textureIndex );
} );
}
detectSupport() {
if ( ! this.isSupported ) {
this.isSupported = new Promise( function ( resolve ) {
const image = new Image();
// Lossy test image. Support for lossy images doesn't guarantee support for all
// WebP images, unfortunately.
image.src = '';
image.onload = image.onerror = function () {
resolve( image.height === 1 );
};
} );
}
return this.isSupported;
}
}
/**
* meshopt BufferView Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_meshopt_compression
*/
class GLTFMeshoptCompression {
constructor( parser ) {
this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION;
this.parser = parser;
}
loadBufferView( index ) {
const json = this.parser.json;
const bufferView = json.bufferViews[ index ];
if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
const extensionDef = bufferView.extensions[ this.name ];
const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
const decoder = this.parser.options.meshoptDecoder;
if ( ! decoder || ! decoder.supported ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
} else {
// Assumes that the extension is optional and that fallback buffer data is present
return null;
}
}
return buffer.then( function ( res ) {
const byteOffset = extensionDef.byteOffset || 0;
const byteLength = extensionDef.byteLength || 0;
const count = extensionDef.count;
const stride = extensionDef.byteStride;
const source = new Uint8Array( res, byteOffset, byteLength );
if ( decoder.decodeGltfBufferAsync ) {
return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) {
return res.buffer;
} );
} else {
// Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
return decoder.ready.then( function () {
const result = new ArrayBuffer( count * stride );
decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
return result;
} );
}
} );
} else {
return null;
}
}
}
/**
* GPU Instancing Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing
*
*/
class GLTFMeshGpuInstancing {
constructor( parser ) {
this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING;
this.parser = parser;
}
createNodeMesh( nodeIndex ) {
const json = this.parser.json;
const nodeDef = json.nodes[ nodeIndex ];
if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] || nodeDef.mesh === undefined ) {
return null;
}
const meshDef = json.meshes[ nodeDef.mesh ];
// No THREE.Points or Lines + Instancing support yet
for ( const primitive of meshDef.primitives ) {
if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN && primitive.mode !== undefined ) {
return null;
}
}
const extensionDef = nodeDef.extensions[ this.name ];
const attributesDef = extensionDef.attributes;
// @TODO: Can we support THREE.InstancedMesh + THREE.SkinnedMesh?
const pending = [];
const attributes = {};
for ( const key in attributesDef ) {
pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => {
attributes[ key ] = accessor;
return attributes[ key ];
} ) );
}
if ( pending.length < 1 ) {
return null;
}
pending.push( this.parser.createNodeMesh( nodeIndex ) );
return Promise.all( pending ).then( results => {
const nodeObject = results.pop();
const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ];
const count = results[ 0 ].count; // All attribute counts should be same
const instancedMeshes = [];
for ( const mesh of meshes ) {
// Temporal variables
const m = new THREE.Matrix4();
const p = new THREE.Vector3();
const q = new THREE.Quaternion();
const s = new THREE.Vector3( 1, 1, 1 );
const instancedMesh = new THREE.InstancedMesh( mesh.geometry, mesh.material, count );
for ( let i = 0; i < count; i ++ ) {
if ( attributes.TRANSLATION ) {
p.fromBufferAttribute( attributes.TRANSLATION, i );
}
if ( attributes.ROTATION ) {
q.fromBufferAttribute( attributes.ROTATION, i );
}
if ( attributes.SCALE ) {
s.fromBufferAttribute( attributes.SCALE, i );
}
instancedMesh.setMatrixAt( i, m.compose( p, q, s ) );
}
// Add instance attributes to the geometry, excluding TRS.
for ( const attributeName in attributes ) {
if ( attributeName !== 'TRANSLATION' && attributeName !== 'ROTATION' && attributeName !== 'SCALE' ) {
mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] );
}
}
// Just in case
THREE.Object3D.prototype.copy.call( instancedMesh, mesh );
// https://github.com/mrdoob/three.js/issues/18334
instancedMesh.frustumCulled = false;
this.parser.assignFinalMaterial( instancedMesh );
instancedMeshes.push( instancedMesh );
}
if ( nodeObject.isGroup ) {
nodeObject.clear();
nodeObject.add( ...instancedMeshes );
return nodeObject;
}
return instancedMeshes[ 0 ];
} );
}
}
/* BINARY EXTENSION */
const BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
const BINARY_EXTENSION_HEADER_LENGTH = 12;
const BINARY_EXTENSION_CHUNK_TYPES = {
JSON: 0x4E4F534A,
BIN: 0x004E4942
};
class GLTFBinaryExtension {
constructor( data ) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
this.header = {
magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
version: headerView.getUint32( 4, true ),
length: headerView.getUint32( 8, true )
};
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
} else if ( this.header.version < 2.0 ) {
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );
}
const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH;
const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
let chunkIndex = 0;
while ( chunkIndex < chunkContentsLength ) {
const chunkLength = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
const chunkType = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
this.content = THREE.LoaderUtils.decodeText( contentArray );
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice( byteOffset, byteOffset + chunkLength );
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if ( this.content === null ) {
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
}
}
}
/**
* DRACO THREE.Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
*/
class GLTFDracoMeshCompressionExtension {
constructor( json, dracoLoader ) {
if ( ! dracoLoader ) {
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
this.dracoLoader.preload();
}
decodePrimitive( primitive, parser ) {
const json = this.json;
const dracoLoader = this.dracoLoader;
const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
const threeAttributeMap = {};
const attributeNormalizedMap = {};
const attributeTypeMap = {};
for ( const attributeName in gltfAttributeMap ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( const attributeName in primitive.attributes ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType.name;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( const attributeName in geometry.attributes ) {
const attribute = geometry.attributes[ attributeName ];
const normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap );
} );
} );
}
}
/**
* THREE.Texture Transform Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
*/
class GLTFTextureTransformExtension {
constructor() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
extendTexture( texture, transform ) {
if ( transform.texCoord !== undefined ) {
console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );
}
if ( transform.offset === undefined && transform.rotation === undefined && transform.scale === undefined ) {
// See https://github.com/mrdoob/three.js/issues/21819.
return texture;
}
texture = texture.clone();
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
texture.needsUpdate = true;
return texture;
}
}
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Archived/KHR_materials_pbrSpecularGlossiness
*/
/**
* A sub class of StandardMaterial with some of the functionality
* changed via the `onBeforeCompile` callback
* @pailhead
*/
class GLTFMeshStandardSGMaterial extends THREE.MeshStandardMaterial {
constructor( params ) {
super();
this.isGLTFSpecularGlossinessMaterial = true;
//various chunks that need replacing
const specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join( '\n' );
const glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join( '\n' );
const specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join( '\n' );
const glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join( '\n' );
const lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb * ( 1. - max( specularFactor.r, max( specularFactor.g, specularFactor.b ) ) );', 'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );', 'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );', 'material.roughness = max( 1.0 - glossinessFactor, 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.', 'material.roughness += geometryRoughness;', 'material.roughness = min( material.roughness, 1.0 );', 'material.specularColor = specularFactor;' ].join( '\n' );
const uniforms = {
specular: {
value: new THREE.Color().setHex( 0xffffff )
},
glossiness: {
value: 1
},
specularMap: {
value: null
},
glossinessMap: {
value: null
}
};
this._extraUniforms = uniforms;
this.onBeforeCompile = function ( shader ) {
for ( const uniformName in uniforms ) {
shader.uniforms[ uniformName ] = uniforms[ uniformName ];
}
shader.fragmentShader = shader.fragmentShader.replace( 'uniform float roughness;', 'uniform vec3 specular;' ).replace( 'uniform float metalness;', 'uniform float glossiness;' ).replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk ).replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk ).replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk ).replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk ).replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );
};
Object.defineProperties( this, {
specular: {
get: function () {
return uniforms.specular.value;
},
set: function ( v ) {
uniforms.specular.value = v;
}
},
specularMap: {
get: function () {
return uniforms.specularMap.value;
},
set: function ( v ) {
uniforms.specularMap.value = v;
if ( v ) {
this.defines.USE_SPECULARMAP = ''; // USE_UV is set by the renderer for specular maps
} else {
delete this.defines.USE_SPECULARMAP;
}
}
},
glossiness: {
get: function () {
return uniforms.glossiness.value;
},
set: function ( v ) {
uniforms.glossiness.value = v;
}
},
glossinessMap: {
get: function () {
return uniforms.glossinessMap.value;
},
set: function ( v ) {
uniforms.glossinessMap.value = v;
if ( v ) {
this.defines.USE_GLOSSINESSMAP = '';
this.defines.USE_UV = '';
} else {
delete this.defines.USE_GLOSSINESSMAP;
delete this.defines.USE_UV;
}
}
}
} );
delete this.metalness;
delete this.roughness;
delete this.metalnessMap;
delete this.roughnessMap;
this.setValues( params );
}
copy( source ) {
super.copy( source );
this.specularMap = source.specularMap;
this.specular.copy( source.specular );
this.glossinessMap = source.glossinessMap;
this.glossiness = source.glossiness;
delete this.metalness;
delete this.roughness;
delete this.metalnessMap;
delete this.roughnessMap;
return this;
}
}
class GLTFMaterialsPbrSpecularGlossinessExtension {
constructor() {
this.name = EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS;
this.specularGlossinessParams = [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'normalMapType', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity' ];
}
getMaterialType() {
return GLTFMeshStandardSGMaterial;
}
extendParams( materialParams, materialDef, parser ) {
const pbrSpecularGlossiness = materialDef.extensions[ this.name ];
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
const pending = [];
if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {
const array = pbrSpecularGlossiness.diffuseFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture, THREE.sRGBEncoding ) );
}
materialParams.emissive = new THREE.Color( 0.0, 0.0, 0.0 );
materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
materialParams.specular = new THREE.Color( 1.0, 1.0, 1.0 );
if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {
materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );
}
if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {
const specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef, THREE.sRGBEncoding ) );
}
return Promise.all( pending );
}
createMaterial( materialParams ) {
const material = new GLTFMeshStandardSGMaterial( materialParams );
material.fog = true;
material.color = materialParams.color;
material.map = materialParams.map === undefined ? null : materialParams.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = materialParams.emissive;
material.emissiveIntensity = materialParams.emissiveIntensity === undefined ? 1.0 : materialParams.emissiveIntensity;
material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;
material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap;
material.bumpScale = 1;
material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap;
material.normalMapType = THREE.TangentSpaceNormalMap;
if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap;
material.specular = materialParams.specular;
material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap;
material.glossiness = materialParams.glossiness;
material.alphaMap = null;
material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap;
material.envMapIntensity = 1.0;
return material;
}
}
/**
* THREE.Mesh Quantization Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
*/
class GLTFMeshQuantizationExtension {
constructor() {
this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;
}
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
class GLTFCubicSplineInterpolant extends THREE.Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
}
copySampleValue_( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
const result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( let i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const stride2 = stride * 2;
const stride3 = stride * 3;
const td = t1 - t0;
const p = ( t - t0 ) / td;
const pp = p * p;
const ppp = pp * p;
const offset1 = i1 * stride3;
const offset0 = offset1 - stride3;
const s2 = - 2 * ppp + 3 * pp;
const s3 = ppp - pp;
const s0 = 1 - s2;
const s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( let i = 0; i !== stride; i ++ ) {
const p0 = values[ offset0 + i + stride ]; // splineVertex_k
const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
}
}
const _q = new THREE.Quaternion();
class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant {
interpolate_( i1, t0, t, t1 ) {
const result = super.interpolate_( i1, t0, t, t1 );
_q.fromArray( result ).normalize().toArray( result );
return result;
}
}
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
const WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
const WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
const WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipmapNearestFilter,
9985: THREE.LinearMipmapNearestFilter,
9986: THREE.NearestMipmapLinearFilter,
9987: THREE.LinearMipmapLinearFilter
};
const WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
const WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
const ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TANGENT: 'tangent',
TEXCOORD_0: 'uv',
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
WEIGHTS_0: 'skinWeight',
JOINTS_0: 'skinIndex'
};
const PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
const INTERPOLATION = {
CUBICSPLINE: undefined,
// We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
// keyframe track will be initialized with a default interpolation type, then modified.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
const ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial( cache ) {
if ( cache[ 'DefaultMaterial' ] === undefined ) {
cache[ 'DefaultMaterial' ] = new THREE.MeshStandardMaterial( {
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
} );
}
return cache[ 'DefaultMaterial' ];
}
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
// Add unknown glTF extensions to an object's userData.
for ( const name in objectDef.extensions ) {
if ( knownExtensions[ name ] === undefined ) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
}
}
}
/**
* @param {Object3D|Material|BufferGeometry} object
* @param {GLTF.definition} gltfDef
*/
function assignExtrasToUserData( object, gltfDef ) {
if ( gltfDef.extras !== undefined ) {
if ( typeof gltfDef.extras === 'object' ) {
Object.assign( object.userData, gltfDef.extras );
} else {
console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
function addMorphTargets( geometry, targets, parser ) {
let hasMorphPosition = false;
let hasMorphNormal = false;
let hasMorphColor = false;
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( target.POSITION !== undefined ) hasMorphPosition = true;
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
if ( target.COLOR_0 !== undefined ) hasMorphColor = true;
if ( hasMorphPosition && hasMorphNormal && hasMorphColor ) break;
}
if ( ! hasMorphPosition && ! hasMorphNormal && ! hasMorphColor ) return Promise.resolve( geometry );
const pendingPositionAccessors = [];
const pendingNormalAccessors = [];
const pendingColorAccessors = [];
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( hasMorphPosition ) {
const pendingAccessor = target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSITION ) : geometry.attributes.position;
pendingPositionAccessors.push( pendingAccessor );
}
if ( hasMorphNormal ) {
const pendingAccessor = target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL ) : geometry.attributes.normal;
pendingNormalAccessors.push( pendingAccessor );
}
if ( hasMorphColor ) {
const pendingAccessor = target.COLOR_0 !== undefined ? parser.getDependency( 'accessor', target.COLOR_0 ) : geometry.attributes.color;
pendingColorAccessors.push( pendingAccessor );
}
}
return Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ), Promise.all( pendingColorAccessors ) ] ).then( function ( accessors ) {
const morphPositions = accessors[ 0 ];
const morphNormals = accessors[ 1 ];
const morphColors = accessors[ 2 ];
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
if ( hasMorphColor ) geometry.morphAttributes.color = morphColors;
geometry.morphTargetsRelative = true;
return geometry;
} );
}
/**
* @param {Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets( mesh, meshDef ) {
mesh.updateMorphTargets();
if ( meshDef.weights !== undefined ) {
for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) {
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
const targetNames = meshDef.extras.targetNames;
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
mesh.morphTargetDictionary = {};
for ( let i = 0, il = targetNames.length; i < il; i ++ ) {
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
}
} else {
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
}
}
}
function createPrimitiveKey( primitiveDef ) {
const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
let geometryKey;
if ( dracoExtension ) {
geometryKey = 'draco:' + dracoExtension.bufferView + ':' + dracoExtension.indices + ':' + createAttributesKey( dracoExtension.attributes );
} else {
geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
}
return geometryKey;
}
function createAttributesKey( attributes ) {
let attributesKey = '';
const keys = Object.keys( attributes ).sort();
for ( let i = 0, il = keys.length; i < il; i ++ ) {
attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';
}
return attributesKey;
}
function getNormalizedComponentScale( constructor ) {
// Reference:
// https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
switch ( constructor ) {
case Int8Array:
return 1 / 127;
case Uint8Array:
return 1 / 255;
case Int16Array:
return 1 / 32767;
case Uint16Array:
return 1 / 65535;
default:
throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' );
}
}
function getImageURIMimeType( uri ) {
if ( uri.search( /\.jpe?g($|\?)/i ) > 0 || uri.search( /^data\:image\/jpeg/ ) === 0 ) return 'image/jpeg';
if ( uri.search( /\.webp($|\?)/i ) > 0 || uri.search( /^data\:image\/webp/ ) === 0 ) return 'image/webp';
return 'image/png';
}
/* GLTF PARSER */
class GLTFParser {
constructor( json = {}, options = {} ) {
this.json = json;
this.extensions = {};
this.plugins = {};
this.options = options;
// loader object cache
this.cache = new GLTFRegistry();
// associations between Three.js objects and glTF elements
this.associations = new Map();
// THREE.BufferGeometry caching
this.primitiveCache = {};
// THREE.Object3D instance caches
this.meshCache = {
refs: {},
uses: {}
};
this.cameraCache = {
refs: {},
uses: {}
};
this.lightCache = {
refs: {},
uses: {}
};
this.sourceCache = {};
this.textureCache = {};
// Track node names, to ensure no duplicates
this.nodeNamesUsed = {};
// Use an THREE.ImageBitmapLoader if imageBitmaps are supported. Moves much of the
// expensive work of uploading a texture to the GPU off the main thread.
const isSafari = /^((?!chrome|android).)*safari/i.test( navigator.userAgent ) === true;
const isFirefox = navigator.userAgent.indexOf( 'Firefox' ) > - 1;
const firefoxVersion = isFirefox ? navigator.userAgent.match( /Firefox\/([0-9]+)\./ )[ 1 ] : - 1;
if ( typeof createImageBitmap === 'undefined' || isSafari || isFirefox && firefoxVersion < 98 ) {
this.textureLoader = new THREE.TextureLoader( this.options.manager );
} else {
this.textureLoader = new THREE.ImageBitmapLoader( this.options.manager );
}
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
this.textureLoader.setRequestHeader( this.options.requestHeader );
this.fileLoader = new THREE.FileLoader( this.options.manager );
this.fileLoader.setResponseType( 'arraybuffer' );
if ( this.options.crossOrigin === 'use-credentials' ) {
this.fileLoader.setWithCredentials( true );
}
}
setExtensions( extensions ) {
this.extensions = extensions;
}
setPlugins( plugins ) {
this.plugins = plugins;
}
parse( onLoad, onError ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this._invokeAll( function ( ext ) {
return ext._markDefs && ext._markDefs();
} );
Promise.all( this._invokeAll( function ( ext ) {
return ext.beforeRoot && ext.beforeRoot();
} ) ).then( function () {
return Promise.all( [ parser.getDependencies( 'scene' ), parser.getDependencies( 'animation' ), parser.getDependencies( 'camera' ) ] );
} ).then( function ( dependencies ) {
const result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
assignExtrasToUserData( result, json );
Promise.all( parser._invokeAll( function ( ext ) {
return ext.afterRoot && ext.afterRoot( result );
} ) ).then( function () {
onLoad( result );
} );
} ).catch( onError );
}
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
_markDefs() {
const nodeDefs = this.json.nodes || [];
const skinDefs = this.json.skins || [];
const meshDefs = this.json.meshes || [];
// Nothing in the node definition indicates whether it is a THREE.Bone or an
// THREE.Object3D. Use the skins' joint references to mark bones.
for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
const joints = skinDefs[ skinIndex ].joints;
for ( let i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Iterate over all nodes, marking references to shared resources,
// as well as skeleton joints.
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
this._addNodeRef( this.meshCache, nodeDef.mesh );
// Nothing in the mesh definition indicates whether it is
// a THREE.SkinnedMesh or THREE.Mesh. Use the node's mesh reference
// to mark THREE.SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
if ( nodeDef.camera !== undefined ) {
this._addNodeRef( this.cameraCache, nodeDef.camera );
}
}
}
/**
* Counts references to shared node / THREE.Object3D resources. These resources
* can be reused, or "instantiated", at multiple nodes in the scene
* hierarchy. THREE.Mesh, Camera, and Light instances are instantiated and must
* be marked. Non-scenegraph resources (like Materials, Geometries, and
* Textures) can be reused directly and are not marked here.
*
* Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
*/
_addNodeRef( cache, index ) {
if ( index === undefined ) return;
if ( cache.refs[ index ] === undefined ) {
cache.refs[ index ] = cache.uses[ index ] = 0;
}
cache.refs[ index ] ++;
}
/** Returns a reference to a shared resource, cloning it if necessary. */
_getNodeRef( cache, index, object ) {
if ( cache.refs[ index ] <= 1 ) return object;
const ref = object.clone();
// Propagates mappings to the cloned object, prevents mappings on the
// original object from being lost.
const updateMappings = ( original, clone ) => {
const mappings = this.associations.get( original );
if ( mappings != null ) {
this.associations.set( clone, mappings );
}
for ( const [ i, child ] of original.children.entries() ) {
updateMappings( child, clone.children[ i ] );
}
};
updateMappings( object, ref );
ref.name += '_instance_' + cache.uses[ index ] ++;
return ref;
}
_invokeOne( func ) {
const extensions = Object.values( this.plugins );
extensions.push( this );
for ( let i = 0; i < extensions.length; i ++ ) {
const result = func( extensions[ i ] );
if ( result ) return result;
}
return null;
}
_invokeAll( func ) {
const extensions = Object.values( this.plugins );
extensions.unshift( this );
const pending = [];
for ( let i = 0; i < extensions.length; i ++ ) {
const result = func( extensions[ i ] );
if ( result ) pending.push( result );
}
return pending;
}
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
*/
getDependency( type, index ) {
const cacheKey = type + ':' + index;
let dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this.loadNode( index );
break;
case 'mesh':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMesh && ext.loadMesh( index );
} );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this._invokeOne( function ( ext ) {
return ext.loadBufferView && ext.loadBufferView( index );
} );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMaterial && ext.loadMaterial( index );
} );
break;
case 'texture':
dependency = this._invokeOne( function ( ext ) {
return ext.loadTexture && ext.loadTexture( index );
} );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this._invokeOne( function ( ext ) {
return ext.loadAnimation && ext.loadAnimation( index );
} );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
default:
dependency = this._invokeOne( function ( ext ) {
return ext != this && ext.getDependency && ext.getDependency( type, index );
} );
if ( ! dependency ) {
throw new Error( 'Unknown type: ' + type );
}
break;
}
this.cache.add( cacheKey, dependency );
}
return dependency;
}
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
getDependencies( type ) {
let dependencies = this.cache.get( type );
if ( ! dependencies ) {
const parser = this;
const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
loadBuffer( bufferIndex ) {
const bufferDef = this.json.buffers[ bufferIndex ];
const loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
const options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( THREE.LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
loadBufferView( bufferViewIndex ) {
const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
const byteLength = bufferViewDef.byteLength || 0;
const byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
*/
loadAccessor( accessorIndex ) {
const parser = this;
const json = this.json;
const accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
const normalized = accessorDef.normalized === true;
const array = new TypedArray( accessorDef.count * itemSize );
return Promise.resolve( new THREE.BufferAttribute( array, itemSize, normalized ) );
}
const pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
const bufferView = bufferViews[ 0 ];
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
const itemBytes = elementBytes * itemSize;
const byteOffset = accessorDef.byteOffset || 0;
const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
const normalized = accessorDef.normalized === true;
let array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own THREE.InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
const ibSlice = Math.floor( byteOffset / byteStride );
const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
let ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset % byteStride / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute = new THREE.BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
}
for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
const index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse THREE.BufferAttribute.' );
}
}
return bufferAttribute;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise<THREE.Texture>}
*/
loadTexture( textureIndex ) {
const json = this.json;
const options = this.options;
const textureDef = json.textures[ textureIndex ];
const sourceIndex = textureDef.source;
const sourceDef = json.images[ sourceIndex ];
let loader = this.textureLoader;
if ( sourceDef.uri ) {
const handler = options.manager.getHandler( sourceDef.uri );
if ( handler !== null ) loader = handler;
}
return this.loadTextureImage( textureIndex, sourceIndex, loader );
}
loadTextureImage( textureIndex, sourceIndex, loader ) {
const parser = this;
const json = this.json;
const textureDef = json.textures[ textureIndex ];
const sourceDef = json.images[ sourceIndex ];
const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler;
if ( this.textureCache[ cacheKey ] ) {
// See https://github.com/mrdoob/three.js/issues/21559.
return this.textureCache[ cacheKey ];
}
const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
texture.flipY = false;
texture.name = textureDef.name || sourceDef.name || '';
const samplers = json.samplers || {};
const sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || THREE.LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || THREE.LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || THREE.RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || THREE.RepeatWrapping;
parser.associations.set( texture, {
textures: textureIndex
} );
return texture;
} ).catch( function () {
return null;
} );
this.textureCache[ cacheKey ] = promise;
return promise;
}
loadImageSource( sourceIndex, loader ) {
const parser = this;
const json = this.json;
const options = this.options;
if ( this.sourceCache[ sourceIndex ] !== undefined ) {
return this.sourceCache[ sourceIndex ].then( texture => texture.clone() );
}
const sourceDef = json.images[ sourceIndex ];
const URL = self.URL || self.webkitURL;
let sourceURI = sourceDef.uri || '';
let isObjectURL = false;
if ( sourceDef.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
const blob = new Blob( [ bufferView ], {
type: sourceDef.mimeType
} );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
} else if ( sourceDef.uri === undefined ) {
throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' );
}
const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
return new Promise( function ( resolve, reject ) {
let onLoad = resolve;
if ( loader.isImageBitmapLoader === true ) {
onLoad = function ( imageBitmap ) {
const texture = new THREE.Texture( imageBitmap );
texture.needsUpdate = true;
resolve( texture );
};
}
loader.load( THREE.LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure THREE.Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri );
return texture;
} ).catch( function ( error ) {
console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
throw error;
} );
this.sourceCache[ sourceIndex ] = promise;
return promise;
}
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @return {Promise<Texture>}
*/
assignTexture( materialParams, mapName, mapDef, encoding ) {
const parser = this;
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured
// However, we will copy UV set 0 to UV set 1 on demand for aoMap
if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {
console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );
}
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
if ( transform ) {
const gltfReference = parser.associations.get( texture );
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
parser.associations.set( texture, gltfReference );
}
}
if ( encoding !== undefined ) {
texture.encoding = encoding;
}
materialParams[ mapName ] = texture;
return texture;
} );
}
/**
* Assigns final material to a THREE.Mesh, THREE.Line, or THREE.Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accommodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
* @param {Object3D} mesh THREE.Mesh, THREE.Line, or THREE.Points instance.
*/
assignFinalMaterial( mesh ) {
const geometry = mesh.geometry;
let material = mesh.material;
const useDerivativeTangents = geometry.attributes.tangent === undefined;
const useVertexColors = geometry.attributes.color !== undefined;
const useFlatShading = geometry.attributes.normal === undefined;
if ( mesh.isPoints ) {
const cacheKey = 'PointsMaterial:' + material.uuid;
let pointsMaterial = this.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new THREE.PointsMaterial();
THREE.Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
const cacheKey = 'LineBasicMaterial:' + material.uuid;
let lineMaterial = this.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
this.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// Clone the material if it will be modified
if ( useDerivativeTangents || useVertexColors || useFlatShading ) {
let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:';
if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:';
if ( useVertexColors ) cacheKey += 'vertex-colors:';
if ( useFlatShading ) cacheKey += 'flat-shading:';
let cachedMaterial = this.cache.get( cacheKey );
if ( ! cachedMaterial ) {
cachedMaterial = material.clone();
if ( useVertexColors ) cachedMaterial.vertexColors = true;
if ( useFlatShading ) cachedMaterial.flatShading = true;
if ( useDerivativeTangents ) {
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
}
this.cache.add( cacheKey, cachedMaterial );
this.associations.set( cachedMaterial, this.associations.get( material ) );
}
material = cachedMaterial;
}
// workarounds for mesh and geometry
if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {
geometry.setAttribute( 'uv2', geometry.attributes.uv );
}
mesh.material = material;
}
getMaterialType() {
return THREE.MeshStandardMaterial;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise<Material>}
*/
loadMaterial( materialIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const materialDef = json.materials[ materialIndex ];
let materialType;
const materialParams = {};
const materialExtensions = materialDef.extensions || {};
const pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {
const sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
materialType = sgExtension.getMaterialType();
pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );
} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType();
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, THREE.sRGBEncoding ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
}
materialType = this._invokeOne( function ( ext ) {
return ext.getMaterialType && ext.getMaterialType( materialIndex );
} );
pending.push( Promise.all( this._invokeAll( function ( ext ) {
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
} ) ) );
}
if ( materialDef.doubleSided === true ) {
materialParams.side = THREE.DoubleSide;
}
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
// See: https://github.com/mrdoob/three.js/issues/17706
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
materialParams.normalScale = new THREE.Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
const scale = materialDef.normalTexture.scale;
materialParams.normalScale.set( scale, scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial ) {
materialParams.emissive = new THREE.Color().fromArray( materialDef.emissiveFactor );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, THREE.sRGBEncoding ) );
}
return Promise.all( pending ).then( function () {
let material;
if ( materialType === GLTFMeshStandardSGMaterial ) {
material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );
} else {
material = new materialType( materialParams );
}
if ( materialDef.name ) material.name = materialDef.name;
assignExtrasToUserData( material, materialDef );
parser.associations.set( material, {
materials: materialIndex
} );
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
}
/** When THREE.Object3D instances are targeted by animation, they need unique names. */
createUniqueName( originalName ) {
const sanitizedName = THREE.PropertyBinding.sanitizeNodeName( originalName || '' );
let name = sanitizedName;
for ( let i = 1; this.nodeNamesUsed[ name ]; ++ i ) {
name = sanitizedName + '_' + i;
}
this.nodeNamesUsed[ name ] = true;
return name;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @param {Array<GLTF.Primitive>} primitives
* @return {Promise<Array<BufferGeometry>>}
*/
loadGeometries( primitives ) {
const parser = this;
const extensions = this.extensions;
const cache = this.primitiveCache;
function createDracoPrimitive( primitive ) {
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ].decodePrimitive( primitive, parser ).then( function ( geometry ) {
return addPrimitiveAttributes( geometry, primitive, parser );
} );
}
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const primitive = primitives[ i ];
const cacheKey = createPrimitiveKey( primitive );
// See if we've already created this geometry
const cached = cache[ cacheKey ];
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached.promise );
} else {
let geometryPromise;
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive( primitive );
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes( new THREE.BufferGeometry(), primitive, parser );
}
// Cache this geometry
cache[ cacheKey ] = {
primitive: primitive,
promise: geometryPromise
};
pending.push( geometryPromise );
}
}
return Promise.all( pending );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise<Group|Mesh|SkinnedMesh>}
*/
loadMesh( meshIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const meshDef = json.meshes[ meshIndex ];
const primitives = meshDef.primitives;
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const material = primitives[ i ].material === undefined ? createDefaultMaterial( this.cache ) : this.getDependency( 'material', primitives[ i ].material );
pending.push( material );
}
pending.push( parser.loadGeometries( primitives ) );
return Promise.all( pending ).then( function ( results ) {
const materials = results.slice( 0, results.length - 1 );
const geometries = results[ results.length - 1 ];
const meshes = [];
for ( let i = 0, il = geometries.length; i < il; i ++ ) {
const geometry = geometries[ i ];
const primitive = primitives[ i ];
// 1. create THREE.Mesh
let mesh;
const material = materials[ i ];
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See ._markDefs()
mesh = meshDef.isSkinnedMesh === true ? new THREE.SkinnedMesh( geometry, material ) : new THREE.Mesh( geometry, material );
if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {
// we normalize floating point skin weight array to fix malformed assets (see #15319)
// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
mesh.normalizeSkinWeights();
}
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, THREE.TriangleStripDrawMode );
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, THREE.TriangleFanDrawMode );
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new THREE.LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new THREE.Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new THREE.LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new THREE.Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = parser.createUniqueName( meshDef.name || 'mesh_' + meshIndex );
assignExtrasToUserData( mesh, meshDef );
if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
parser.assignFinalMaterial( mesh );
meshes.push( mesh );
}
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
parser.associations.set( meshes[ i ], {
meshes: meshIndex,
primitives: i
} );
}
if ( meshes.length === 1 ) {
return meshes[ 0 ];
}
const group = new THREE.Group();
parser.associations.set( group, {
meshes: meshIndex
} );
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
loadCamera( cameraIndex ) {
let camera;
const cameraDef = this.json.cameras[ cameraIndex ];
const params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new THREE.PerspectiveCamera( THREE.MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new THREE.OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
}
if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
assignExtrasToUserData( camera, cameraDef );
return Promise.resolve( camera );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise<Object>}
*/
loadSkin( skinIndex ) {
const skinDef = this.json.skins[ skinIndex ];
const skinEntry = {
joints: skinDef.joints
};
if ( skinDef.inverseBindMatrices === undefined ) {
return Promise.resolve( skinEntry );
}
return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {
skinEntry.inverseBindMatrices = accessor;
return skinEntry;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise<AnimationClip>}
*/
loadAnimation( animationIndex ) {
const json = this.json;
const animationDef = json.animations[ animationIndex ];
const pendingNodes = [];
const pendingInputAccessors = [];
const pendingOutputAccessors = [];
const pendingSamplers = [];
const pendingTargets = [];
for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
const channel = animationDef.channels[ i ];
const sampler = animationDef.samplers[ channel.sampler ];
const target = channel.target;
const name = target.node;
const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
pendingNodes.push( this.getDependency( 'node', name ) );
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
pendingSamplers.push( sampler );
pendingTargets.push( target );
}
return Promise.all( [ Promise.all( pendingNodes ), Promise.all( pendingInputAccessors ), Promise.all( pendingOutputAccessors ), Promise.all( pendingSamplers ), Promise.all( pendingTargets ) ] ).then( function ( dependencies ) {
const nodes = dependencies[ 0 ];
const inputAccessors = dependencies[ 1 ];
const outputAccessors = dependencies[ 2 ];
const samplers = dependencies[ 3 ];
const targets = dependencies[ 4 ];
const tracks = [];
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
const node = nodes[ i ];
const inputAccessor = inputAccessors[ i ];
const outputAccessor = outputAccessors[ i ];
const sampler = samplers[ i ];
const target = targets[ i ];
if ( node === undefined ) continue;
node.updateMatrix();
let TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = THREE.NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = THREE.QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
default:
TypedKeyframeTrack = THREE.VectorKeyframeTrack;
break;
}
const targetName = node.name ? node.name : node.uuid;
const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : THREE.InterpolateLinear;
const targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
node.traverse( function ( object ) {
if ( object.morphTargetInfluences ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
let outputArray = outputAccessor.array;
if ( outputAccessor.normalized ) {
const scale = getNormalizedComponentScale( outputArray.constructor );
const scaled = new Float32Array( outputArray.length );
for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
scaled[ j ] = outputArray[ j ] * scale;
}
outputArray = scaled;
}
for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
const track = new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], inputAccessor.array, outputArray, interpolation );
// Override interpolation with custom factory method.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
const interpolantType = this instanceof THREE.QuaternionKeyframeTrack ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
return new interpolantType( this.times, this.values, this.getValueSize() / 3, result );
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
tracks.push( track );
}
}
const name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
return new THREE.AnimationClip( name, undefined, tracks );
} );
}
createNodeMesh( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
if ( nodeDef.mesh === undefined ) return null;
return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
// if weights are provided on the node, override weights on the mesh.
if ( nodeDef.weights !== undefined ) {
node.traverse( function ( o ) {
if ( ! o.isMesh ) return;
for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
}
} );
}
return node;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise<Object3D>}
*/
loadNode( nodeIndex ) {
const json = this.json;
const extensions = this.extensions;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
// reserve node's name before its dependencies, so the root has the intended name.
const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
return function () {
const pending = [];
const meshPromise = parser._invokeOne( function ( ext ) {
return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
} );
if ( meshPromise ) {
pending.push( meshPromise );
}
if ( nodeDef.camera !== undefined ) {
pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
} ) );
}
parser._invokeAll( function ( ext ) {
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
} ).forEach( function ( promise ) {
pending.push( promise );
} );
return Promise.all( pending );
}().then( function ( objects ) {
let node;
// .isBone isn't in glTF spec. See ._markDefs
if ( nodeDef.isBone === true ) {
node = new THREE.Bone();
} else if ( objects.length > 1 ) {
node = new THREE.Group();
} else if ( objects.length === 1 ) {
node = objects[ 0 ];
} else {
node = new THREE.Object3D();
}
if ( node !== objects[ 0 ] ) {
for ( let i = 0, il = objects.length; i < il; i ++ ) {
node.add( objects[ i ] );
}
}
if ( nodeDef.name ) {
node.userData.name = nodeDef.name;
node.name = nodeName;
}
assignExtrasToUserData( node, nodeDef );
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
const matrix = new THREE.Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix4( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
if ( ! parser.associations.has( node ) ) {
parser.associations.set( node, {} );
}
parser.associations.get( node ).nodes = nodeIndex;
return node;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise<Group>}
*/
loadScene( sceneIndex ) {
const json = this.json;
const extensions = this.extensions;
const sceneDef = this.json.scenes[ sceneIndex ];
const parser = this;
// THREE.Loader returns THREE.Group, not Scene.
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
const scene = new THREE.Group();
if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
assignExtrasToUserData( scene, sceneDef );
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
const nodeIds = sceneDef.nodes || [];
const pending = [];
for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
pending.push( buildNodeHierarchy( nodeIds[ i ], scene, json, parser ) );
}
return Promise.all( pending ).then( function () {
// Removes dangling associations, associations that reference a node that
// didn't make it into the scene.
const reduceAssociations = node => {
const reducedAssociations = new Map();
for ( const [ key, value ] of parser.associations ) {
if ( key instanceof THREE.Material || key instanceof THREE.Texture ) {
reducedAssociations.set( key, value );
}
}
node.traverse( node => {
const mappings = parser.associations.get( node );
if ( mappings != null ) {
reducedAssociations.set( node, mappings );
}
} );
return reducedAssociations;
};
parser.associations = reduceAssociations( scene );
return scene;
} );
}
}
function buildNodeHierarchy( nodeId, parentObject, json, parser ) {
const nodeDef = json.nodes[ nodeId ];
return parser.getDependency( 'node', nodeId ).then( function ( node ) {
if ( nodeDef.skin === undefined ) return node;
// build skeleton here as well
let skinEntry;
return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {
skinEntry = skin;
const pendingJoints = [];
for ( let i = 0, il = skinEntry.joints.length; i < il; i ++ ) {
pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );
}
return Promise.all( pendingJoints );
} ).then( function ( jointNodes ) {
node.traverse( function ( mesh ) {
if ( ! mesh.isMesh ) return;
const bones = [];
const boneInverses = [];
for ( let j = 0, jl = jointNodes.length; j < jl; j ++ ) {
const jointNode = jointNodes[ j ];
if ( jointNode ) {
bones.push( jointNode );
const mat = new THREE.Matrix4();
if ( skinEntry.inverseBindMatrices !== undefined ) {
mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );
}
}
mesh.bind( new THREE.Skeleton( bones, boneInverses ), mesh.matrixWorld );
} );
return node;
} );
} ).then( function ( node ) {
// build node hierachy
parentObject.add( node );
const pending = [];
if ( nodeDef.children ) {
const children = nodeDef.children;
for ( let i = 0, il = children.length; i < il; i ++ ) {
const child = children[ i ];
pending.push( buildNodeHierarchy( child, node, json, parser ) );
}
}
return Promise.all( pending );
} );
}
/**
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
*/
function computeBounds( geometry, primitiveDef, parser ) {
const attributes = primitiveDef.attributes;
const box = new THREE.Box3();
if ( attributes.POSITION !== undefined ) {
const accessor = parser.json.accessors[ attributes.POSITION ];
const min = accessor.min;
const max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
box.set( new THREE.Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ), new THREE.Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) );
if ( accessor.normalized ) {
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
box.min.multiplyScalar( boxScale );
box.max.multiplyScalar( boxScale );
}
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
return;
}
} else {
return;
}
const targets = primitiveDef.targets;
if ( targets !== undefined ) {
const maxDisplacement = new THREE.Vector3();
const vector = new THREE.Vector3();
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( target.POSITION !== undefined ) {
const accessor = parser.json.accessors[ target.POSITION ];
const min = accessor.min;
const max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
// we need to get max of absolute components because target weight is [-1,1]
vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );
if ( accessor.normalized ) {
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
vector.multiplyScalar( boxScale );
}
// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
// are used to implement key-frame animations and as such only two are active at a time - this results in very large
// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
maxDisplacement.max( vector );
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
}
}
}
// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
box.expandByVector( maxDisplacement );
}
geometry.boundingBox = box;
const sphere = new THREE.Sphere();
box.getCenter( sphere.center );
sphere.radius = box.min.distanceTo( box.max ) / 2;
geometry.boundingSphere = sphere;
}
/**
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
function addPrimitiveAttributes( geometry, primitiveDef, parser ) {
const attributes = primitiveDef.attributes;
const pending = [];
function assignAttributeAccessor( accessorIndex, attributeName ) {
return parser.getDependency( 'accessor', accessorIndex ).then( function ( accessor ) {
geometry.setAttribute( attributeName, accessor );
} );
}
for ( const gltfAttributeName in attributes ) {
const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();
// Skip attributes already provided by e.g. Draco extension.
if ( threeAttributeName in geometry.attributes ) continue;
pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );
}
if ( primitiveDef.indices !== undefined && ! geometry.index ) {
const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {
geometry.setIndex( accessor );
} );
pending.push( accessor );
}
assignExtrasToUserData( geometry, primitiveDef );
computeBounds( geometry, primitiveDef, parser );
return Promise.all( pending ).then( function () {
return primitiveDef.targets !== undefined ? addMorphTargets( geometry, primitiveDef.targets, parser ) : geometry;
} );
}
/**
* @param {BufferGeometry} geometry
* @param {Number} drawMode
* @return {BufferGeometry}
*/
function toTrianglesDrawMode( geometry, drawMode ) {
let index = geometry.getIndex();
// generate index if not present
if ( index === null ) {
const indices = [];
const position = geometry.getAttribute( 'position' );
if ( position !== undefined ) {
for ( let i = 0; i < position.count; i ++ ) {
indices.push( i );
}
geometry.setIndex( indices );
index = geometry.getIndex();
} else {
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
return geometry;
}
}
//
const numberOfTriangles = index.count - 2;
const newIndices = [];
if ( drawMode === THREE.TriangleFanDrawMode ) {
// gl.TRIANGLE_FAN
for ( let i = 1; i <= numberOfTriangles; i ++ ) {
newIndices.push( index.getX( 0 ) );
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
}
} else {
// gl.TRIANGLE_STRIP
for ( let i = 0; i < numberOfTriangles; i ++ ) {
if ( i % 2 === 0 ) {
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i + 2 ) );
} else {
newIndices.push( index.getX( i + 2 ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i ) );
}
}
}
if ( newIndices.length / 3 !== numberOfTriangles ) {
console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );
}
// build final geometry
const newGeometry = geometry.clone();
newGeometry.setIndex( newIndices );
return newGeometry;
}
THREE.GLTFLoader = GLTFLoader;
} )();