You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
4.9 KiB
141 lines
4.9 KiB
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
|
|
|
|
Usage:
|
|
import torch
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from models.yolo import Model
|
|
from utils.general import set_logging
|
|
from utils.google_utils import attempt_download
|
|
|
|
dependencies = ['torch', 'yaml']
|
|
set_logging()
|
|
|
|
|
|
def create(name, pretrained, channels, classes, autoshape):
|
|
"""Creates a specified YOLOv5 model
|
|
|
|
Arguments:
|
|
name (str): name of model, i.e. 'yolov5s'
|
|
pretrained (bool): load pretrained weights into the model
|
|
channels (int): number of input channels
|
|
classes (int): number of model classes
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
|
|
try:
|
|
model = Model(config, channels, classes)
|
|
if pretrained:
|
|
fname = f'{name}.pt' # checkpoint filename
|
|
attempt_download(fname) # download if not found locally
|
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
|
|
model.load_state_dict(state_dict, strict=False) # load
|
|
if len(ckpt['model'].names) == classes:
|
|
model.names = ckpt['model'].names # set class names attribute
|
|
if autoshape:
|
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
|
return model
|
|
|
|
except Exception as e:
|
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
|
|
raise Exception(s) from e
|
|
|
|
|
|
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5s', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5m', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5l', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
|
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5x', pretrained, channels, classes, autoshape)
|
|
|
|
|
|
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments (3 options):
|
|
path_or_model (str): 'path/to/model.pt'
|
|
path_or_model (dict): torch.load('path/to/model.pt')
|
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
|
if isinstance(model, dict):
|
|
model = model['model'] # load model
|
|
|
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
|
hub_model.names = model.names # class names
|
|
return hub_model.autoshape() if autoshape else hub_model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
|
# model = custom(path_or_model='path/to/model.pt') # custom example
|
|
|
|
# Verify inference
|
|
from PIL import Image
|
|
|
|
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
|
|
results = model(imgs)
|
|
results.show()
|
|
results.print()
|
|
|