
109 changed files with 14438 additions and 0 deletions
@ -0,0 +1,3 @@ |
|||
[submodule "yolov5"] |
|||
path = yolov5 |
|||
url = https://github.com/ultralytics/yolov5.git |
@ -0,0 +1,5 @@ |
|||
{ |
|||
"python.analysis.extraPaths": [ |
|||
"./yolov5" |
|||
] |
|||
} |
Binary file not shown.
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 573 KiB |
@ -0,0 +1,13 @@ |
|||
# Folders |
|||
__pycache__/ |
|||
build/ |
|||
*.egg-info |
|||
|
|||
|
|||
# Files |
|||
*.weights |
|||
*.t7 |
|||
*.mp4 |
|||
*.avi |
|||
*.so |
|||
*.txt |
@ -0,0 +1,21 @@ |
|||
MIT License |
|||
|
|||
Copyright (c) 2020 Ziqiang |
|||
|
|||
Permission is hereby granted, free of charge, to any person obtaining a copy |
|||
of this software and associated documentation files (the "Software"), to deal |
|||
in the Software without restriction, including without limitation the rights |
|||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|||
copies of the Software, and to permit persons to whom the Software is |
|||
furnished to do so, subject to the following conditions: |
|||
|
|||
The above copyright notice and this permission notice shall be included in all |
|||
copies or substantial portions of the Software. |
|||
|
|||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|||
SOFTWARE. |
@ -0,0 +1,137 @@ |
|||
# Deep Sort with PyTorch |
|||
|
|||
 |
|||
|
|||
## Update(1-1-2020) |
|||
Changes |
|||
- fix bugs |
|||
- refactor code |
|||
- accerate detection by adding nms on gpu |
|||
|
|||
## Latest Update(07-22) |
|||
Changes |
|||
- bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting). |
|||
- using batch for feature extracting for each frame, which lead to a small speed up. |
|||
- code improvement. |
|||
|
|||
Futher improvement direction |
|||
- Train detector on specific dataset rather than the official one. |
|||
- Retrain REID model on pedestrain dataset for better performance. |
|||
- Replace YOLOv3 detector with advanced ones. |
|||
|
|||
**Any contributions to this repository is welcome!** |
|||
|
|||
|
|||
## Introduction |
|||
This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort). |
|||
However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN. |
|||
|
|||
## Dependencies |
|||
- python 3 (python2 not sure) |
|||
- numpy |
|||
- scipy |
|||
- opencv-python |
|||
- sklearn |
|||
- torch >= 0.4 |
|||
- torchvision >= 0.1 |
|||
- pillow |
|||
- vizer |
|||
- edict |
|||
|
|||
## Quick Start |
|||
0. Check all dependencies installed |
|||
```bash |
|||
pip install -r requirements.txt |
|||
``` |
|||
for user in china, you can specify pypi source to accelerate install like: |
|||
```bash |
|||
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple |
|||
``` |
|||
|
|||
1. Clone this repository |
|||
``` |
|||
git clone git@github.com:ZQPei/deep_sort_pytorch.git |
|||
``` |
|||
|
|||
2. Download YOLOv3 parameters |
|||
``` |
|||
cd detector/YOLOv3/weight/ |
|||
wget https://pjreddie.com/media/files/yolov3.weights |
|||
wget https://pjreddie.com/media/files/yolov3-tiny.weights |
|||
cd ../../../ |
|||
``` |
|||
|
|||
3. Download deepsort parameters ckpt.t7 |
|||
``` |
|||
cd deep_sort/deep/checkpoint |
|||
# download ckpt.t7 from |
|||
https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder |
|||
cd ../../../ |
|||
``` |
|||
|
|||
4. Compile nms module |
|||
```bash |
|||
cd detector/YOLOv3/nms |
|||
sh build.sh |
|||
cd ../../.. |
|||
``` |
|||
|
|||
Notice: |
|||
If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`. |
|||
|
|||
5. Run demo |
|||
``` |
|||
usage: python yolov3_deepsort.py VIDEO_PATH |
|||
[--help] |
|||
[--frame_interval FRAME_INTERVAL] |
|||
[--config_detection CONFIG_DETECTION] |
|||
[--config_deepsort CONFIG_DEEPSORT] |
|||
[--display] |
|||
[--display_width DISPLAY_WIDTH] |
|||
[--display_height DISPLAY_HEIGHT] |
|||
[--save_path SAVE_PATH] |
|||
[--cpu] |
|||
|
|||
# yolov3 + deepsort |
|||
python yolov3_deepsort.py [VIDEO_PATH] |
|||
|
|||
# yolov3_tiny + deepsort |
|||
python yolov3_deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml |
|||
|
|||
# yolov3 + deepsort on webcam |
|||
python3 yolov3_deepsort.py /dev/video0 --camera 0 |
|||
|
|||
# yolov3_tiny + deepsort on webcam |
|||
python3 yolov3_deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0 |
|||
``` |
|||
Use `--display` to enable display. |
|||
Results will be saved to `./output/results.avi` and `./output/results.txt`. |
|||
|
|||
All files above can also be accessed from BaiduDisk! |
|||
linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg) |
|||
passwd:fbuw |
|||
|
|||
## Training the RE-ID model |
|||
The original model used in paper is in original_model.py, and its parameter here [original_ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6). |
|||
|
|||
To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset. |
|||
|
|||
Then you can try [train.py](deep_sort/deep/train.py) to train your own parameter and evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py). |
|||
 |
|||
|
|||
## Demo videos and images |
|||
[demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) |
|||
[demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) |
|||
|
|||
 |
|||
 |
|||
|
|||
|
|||
## References |
|||
- paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402) |
|||
|
|||
- code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort) |
|||
|
|||
- paper: [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf) |
|||
|
|||
- code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/) |
@ -0,0 +1,10 @@ |
|||
DEEPSORT: |
|||
REID_CKPT: "deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7" |
|||
MAX_DIST: 0.2 |
|||
MIN_CONFIDENCE: 0.3 |
|||
NMS_MAX_OVERLAP: 0.5 |
|||
MAX_IOU_DISTANCE: 0.7 |
|||
MAX_AGE: 70 |
|||
N_INIT: 3 |
|||
NN_BUDGET: 100 |
|||
|
@ -0,0 +1,3 @@ |
|||
# Deep Sort |
|||
|
|||
This is the implemention of deep sort with pytorch. |
@ -0,0 +1,21 @@ |
|||
from .deep_sort import DeepSort |
|||
|
|||
|
|||
__all__ = ['DeepSort', 'build_tracker'] |
|||
|
|||
|
|||
def build_tracker(cfg, use_cuda): |
|||
return DeepSort(cfg.DEEPSORT.REID_CKPT, |
|||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
|||
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
|||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=use_cuda) |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,13 @@ |
|||
import torch |
|||
|
|||
features = torch.load("features.pth") |
|||
qf = features["qf"] |
|||
ql = features["ql"] |
|||
gf = features["gf"] |
|||
gl = features["gl"] |
|||
|
|||
scores = qf.mm(gf.t()) |
|||
res = scores.topk(5, dim=1)[1][:, 0] |
|||
top1correct = gl[res].eq(ql).sum().item() |
|||
|
|||
print("Acc top1:{:.3f}".format(top1correct / ql.size(0))) |
@ -0,0 +1,54 @@ |
|||
import torch |
|||
import torchvision.transforms as transforms |
|||
import numpy as np |
|||
import cv2 |
|||
import logging |
|||
|
|||
from .model import Net |
|||
|
|||
|
|||
class Extractor(object): |
|||
def __init__(self, model_path, use_cuda=True): |
|||
self.net = Net(reid=True) |
|||
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" |
|||
state_dict = torch.load(model_path, map_location=torch.device(self.device))[ |
|||
'net_dict'] |
|||
self.net.load_state_dict(state_dict) |
|||
logger = logging.getLogger("root.tracker") |
|||
logger.info("Loading weights from {}... Done!".format(model_path)) |
|||
self.net.to(self.device) |
|||
self.size = (64, 128) |
|||
self.norm = transforms.Compose([ |
|||
transforms.ToTensor(), |
|||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|||
]) |
|||
|
|||
def _preprocess(self, im_crops): |
|||
""" |
|||
TODO: |
|||
1. to float with scale from 0 to 1 |
|||
2. resize to (64, 128) as Market1501 dataset did |
|||
3. concatenate to a numpy array |
|||
3. to torch Tensor |
|||
4. normalize |
|||
""" |
|||
def _resize(im, size): |
|||
return cv2.resize(im.astype(np.float32)/255., size) |
|||
|
|||
im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze( |
|||
0) for im in im_crops], dim=0).float() |
|||
return im_batch |
|||
|
|||
def __call__(self, im_crops): |
|||
im_batch = self._preprocess(im_crops) |
|||
with torch.no_grad(): |
|||
im_batch = im_batch.to(self.device) |
|||
features = self.net(im_batch) |
|||
return features.cpu().numpy() |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)] |
|||
extr = Extractor("checkpoint/ckpt.t7") |
|||
feature = extr(img) |
|||
print(feature.shape) |
@ -0,0 +1,109 @@ |
|||
import torch |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
|
|||
|
|||
class BasicBlock(nn.Module): |
|||
def __init__(self, c_in, c_out, is_downsample=False): |
|||
super(BasicBlock, self).__init__() |
|||
self.is_downsample = is_downsample |
|||
if is_downsample: |
|||
self.conv1 = nn.Conv2d( |
|||
c_in, c_out, 3, stride=2, padding=1, bias=False) |
|||
else: |
|||
self.conv1 = nn.Conv2d( |
|||
c_in, c_out, 3, stride=1, padding=1, bias=False) |
|||
self.bn1 = nn.BatchNorm2d(c_out) |
|||
self.relu = nn.ReLU(True) |
|||
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1, |
|||
padding=1, bias=False) |
|||
self.bn2 = nn.BatchNorm2d(c_out) |
|||
if is_downsample: |
|||
self.downsample = nn.Sequential( |
|||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False), |
|||
nn.BatchNorm2d(c_out) |
|||
) |
|||
elif c_in != c_out: |
|||
self.downsample = nn.Sequential( |
|||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False), |
|||
nn.BatchNorm2d(c_out) |
|||
) |
|||
self.is_downsample = True |
|||
|
|||
def forward(self, x): |
|||
y = self.conv1(x) |
|||
y = self.bn1(y) |
|||
y = self.relu(y) |
|||
y = self.conv2(y) |
|||
y = self.bn2(y) |
|||
if self.is_downsample: |
|||
x = self.downsample(x) |
|||
return F.relu(x.add(y), True) |
|||
|
|||
|
|||
def make_layers(c_in, c_out, repeat_times, is_downsample=False): |
|||
blocks = [] |
|||
for i in range(repeat_times): |
|||
if i == 0: |
|||
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ] |
|||
else: |
|||
blocks += [BasicBlock(c_out, c_out), ] |
|||
return nn.Sequential(*blocks) |
|||
|
|||
|
|||
class Net(nn.Module): |
|||
def __init__(self, num_classes=751, reid=False): |
|||
super(Net, self).__init__() |
|||
# 3 128 64 |
|||
self.conv = nn.Sequential( |
|||
nn.Conv2d(3, 64, 3, stride=1, padding=1), |
|||
nn.BatchNorm2d(64), |
|||
nn.ReLU(inplace=True), |
|||
# nn.Conv2d(32,32,3,stride=1,padding=1), |
|||
# nn.BatchNorm2d(32), |
|||
# nn.ReLU(inplace=True), |
|||
nn.MaxPool2d(3, 2, padding=1), |
|||
) |
|||
# 32 64 32 |
|||
self.layer1 = make_layers(64, 64, 2, False) |
|||
# 32 64 32 |
|||
self.layer2 = make_layers(64, 128, 2, True) |
|||
# 64 32 16 |
|||
self.layer3 = make_layers(128, 256, 2, True) |
|||
# 128 16 8 |
|||
self.layer4 = make_layers(256, 512, 2, True) |
|||
# 256 8 4 |
|||
self.avgpool = nn.AvgPool2d((8, 4), 1) |
|||
# 256 1 1 |
|||
self.reid = reid |
|||
self.classifier = nn.Sequential( |
|||
nn.Linear(512, 256), |
|||
nn.BatchNorm1d(256), |
|||
nn.ReLU(inplace=True), |
|||
nn.Dropout(), |
|||
nn.Linear(256, num_classes), |
|||
) |
|||
|
|||
def forward(self, x): |
|||
x = self.conv(x) |
|||
x = self.layer1(x) |
|||
x = self.layer2(x) |
|||
x = self.layer3(x) |
|||
x = self.layer4(x) |
|||
x = self.avgpool(x) |
|||
x = x.view(x.size(0), -1) |
|||
# B x 128 |
|||
if self.reid: |
|||
x = x.div(x.norm(p=2, dim=1, keepdim=True)) |
|||
return x |
|||
# classifier |
|||
x = self.classifier(x) |
|||
return x |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
net = Net() |
|||
x = torch.randn(4, 3, 128, 64) |
|||
y = net(x) |
|||
import ipdb |
|||
ipdb.set_trace() |
@ -0,0 +1,111 @@ |
|||
import torch |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
|
|||
|
|||
class BasicBlock(nn.Module): |
|||
def __init__(self, c_in, c_out, is_downsample=False): |
|||
super(BasicBlock, self).__init__() |
|||
self.is_downsample = is_downsample |
|||
if is_downsample: |
|||
self.conv1 = nn.Conv2d( |
|||
c_in, c_out, 3, stride=2, padding=1, bias=False) |
|||
else: |
|||
self.conv1 = nn.Conv2d( |
|||
c_in, c_out, 3, stride=1, padding=1, bias=False) |
|||
self.bn1 = nn.BatchNorm2d(c_out) |
|||
self.relu = nn.ReLU(True) |
|||
self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1, |
|||
padding=1, bias=False) |
|||
self.bn2 = nn.BatchNorm2d(c_out) |
|||
if is_downsample: |
|||
self.downsample = nn.Sequential( |
|||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False), |
|||
nn.BatchNorm2d(c_out) |
|||
) |
|||
elif c_in != c_out: |
|||
self.downsample = nn.Sequential( |
|||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False), |
|||
nn.BatchNorm2d(c_out) |
|||
) |
|||
self.is_downsample = True |
|||
|
|||
def forward(self, x): |
|||
y = self.conv1(x) |
|||
y = self.bn1(y) |
|||
y = self.relu(y) |
|||
y = self.conv2(y) |
|||
y = self.bn2(y) |
|||
if self.is_downsample: |
|||
x = self.downsample(x) |
|||
return F.relu(x.add(y), True) |
|||
|
|||
|
|||
def make_layers(c_in, c_out, repeat_times, is_downsample=False): |
|||
blocks = [] |
|||
for i in range(repeat_times): |
|||
if i == 0: |
|||
blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ] |
|||
else: |
|||
blocks += [BasicBlock(c_out, c_out), ] |
|||
return nn.Sequential(*blocks) |
|||
|
|||
|
|||
class Net(nn.Module): |
|||
def __init__(self, num_classes=625, reid=False): |
|||
super(Net, self).__init__() |
|||
# 3 128 64 |
|||
self.conv = nn.Sequential( |
|||
nn.Conv2d(3, 32, 3, stride=1, padding=1), |
|||
nn.BatchNorm2d(32), |
|||
nn.ELU(inplace=True), |
|||
nn.Conv2d(32, 32, 3, stride=1, padding=1), |
|||
nn.BatchNorm2d(32), |
|||
nn.ELU(inplace=True), |
|||
nn.MaxPool2d(3, 2, padding=1), |
|||
) |
|||
# 32 64 32 |
|||
self.layer1 = make_layers(32, 32, 2, False) |
|||
# 32 64 32 |
|||
self.layer2 = make_layers(32, 64, 2, True) |
|||
# 64 32 16 |
|||
self.layer3 = make_layers(64, 128, 2, True) |
|||
# 128 16 8 |
|||
self.dense = nn.Sequential( |
|||
nn.Dropout(p=0.6), |
|||
nn.Linear(128*16*8, 128), |
|||
nn.BatchNorm1d(128), |
|||
nn.ELU(inplace=True) |
|||
) |
|||
# 256 1 1 |
|||
self.reid = reid |
|||
self.batch_norm = nn.BatchNorm1d(128) |
|||
self.classifier = nn.Sequential( |
|||
nn.Linear(128, num_classes), |
|||
) |
|||
|
|||
def forward(self, x): |
|||
x = self.conv(x) |
|||
x = self.layer1(x) |
|||
x = self.layer2(x) |
|||
x = self.layer3(x) |
|||
|
|||
x = x.view(x.size(0), -1) |
|||
if self.reid: |
|||
x = self.dense[0](x) |
|||
x = self.dense[1](x) |
|||
x = x.div(x.norm(p=2, dim=1, keepdim=True)) |
|||
return x |
|||
x = self.dense(x) |
|||
# B x 128 |
|||
# classifier |
|||
x = self.classifier(x) |
|||
return x |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
net = Net(reid=True) |
|||
x = torch.randn(4, 3, 128, 64) |
|||
y = net(x) |
|||
import ipdb |
|||
ipdb.set_trace() |
@ -0,0 +1,80 @@ |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
import torchvision |
|||
|
|||
import argparse |
|||
import os |
|||
|
|||
from model import Net |
|||
|
|||
parser = argparse.ArgumentParser(description="Train on market1501") |
|||
parser.add_argument("--data-dir", default='data', type=str) |
|||
parser.add_argument("--no-cuda", action="store_true") |
|||
parser.add_argument("--gpu-id", default=0, type=int) |
|||
args = parser.parse_args() |
|||
|
|||
# device |
|||
device = "cuda:{}".format( |
|||
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu" |
|||
if torch.cuda.is_available() and not args.no_cuda: |
|||
cudnn.benchmark = True |
|||
|
|||
# data loader |
|||
root = args.data_dir |
|||
query_dir = os.path.join(root, "query") |
|||
gallery_dir = os.path.join(root, "gallery") |
|||
transform = torchvision.transforms.Compose([ |
|||
torchvision.transforms.Resize((128, 64)), |
|||
torchvision.transforms.ToTensor(), |
|||
torchvision.transforms.Normalize( |
|||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|||
]) |
|||
queryloader = torch.utils.data.DataLoader( |
|||
torchvision.datasets.ImageFolder(query_dir, transform=transform), |
|||
batch_size=64, shuffle=False |
|||
) |
|||
galleryloader = torch.utils.data.DataLoader( |
|||
torchvision.datasets.ImageFolder(gallery_dir, transform=transform), |
|||
batch_size=64, shuffle=False |
|||
) |
|||
|
|||
# net definition |
|||
net = Net(reid=True) |
|||
assert os.path.isfile( |
|||
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!" |
|||
print('Loading from checkpoint/ckpt.t7') |
|||
checkpoint = torch.load("./checkpoint/ckpt.t7") |
|||
net_dict = checkpoint['net_dict'] |
|||
net.load_state_dict(net_dict, strict=False) |
|||
net.eval() |
|||
net.to(device) |
|||
|
|||
# compute features |
|||
query_features = torch.tensor([]).float() |
|||
query_labels = torch.tensor([]).long() |
|||
gallery_features = torch.tensor([]).float() |
|||
gallery_labels = torch.tensor([]).long() |
|||
|
|||
with torch.no_grad(): |
|||
for idx, (inputs, labels) in enumerate(queryloader): |
|||
inputs = inputs.to(device) |
|||
features = net(inputs).cpu() |
|||
query_features = torch.cat((query_features, features), dim=0) |
|||
query_labels = torch.cat((query_labels, labels)) |
|||
|
|||
for idx, (inputs, labels) in enumerate(galleryloader): |
|||
inputs = inputs.to(device) |
|||
features = net(inputs).cpu() |
|||
gallery_features = torch.cat((gallery_features, features), dim=0) |
|||
gallery_labels = torch.cat((gallery_labels, labels)) |
|||
|
|||
gallery_labels -= 2 |
|||
|
|||
# save features |
|||
features = { |
|||
"qf": query_features, |
|||
"ql": query_labels, |
|||
"gf": gallery_features, |
|||
"gl": gallery_labels |
|||
} |
|||
torch.save(features, "features.pth") |
After Width: | Height: | Size: 59 KiB |
@ -0,0 +1,206 @@ |
|||
import argparse |
|||
import os |
|||
import time |
|||
|
|||
import numpy as np |
|||
import matplotlib.pyplot as plt |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
import torchvision |
|||
|
|||
from model import Net |
|||
|
|||
parser = argparse.ArgumentParser(description="Train on market1501") |
|||
parser.add_argument("--data-dir", default='data', type=str) |
|||
parser.add_argument("--no-cuda", action="store_true") |
|||
parser.add_argument("--gpu-id", default=0, type=int) |
|||
parser.add_argument("--lr", default=0.1, type=float) |
|||
parser.add_argument("--interval", '-i', default=20, type=int) |
|||
parser.add_argument('--resume', '-r', action='store_true') |
|||
args = parser.parse_args() |
|||
|
|||
# device |
|||
device = "cuda:{}".format( |
|||
args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu" |
|||
if torch.cuda.is_available() and not args.no_cuda: |
|||
cudnn.benchmark = True |
|||
|
|||
# data loading |
|||
root = args.data_dir |
|||
train_dir = os.path.join(root, "train") |
|||
test_dir = os.path.join(root, "test") |
|||
transform_train = torchvision.transforms.Compose([ |
|||
torchvision.transforms.RandomCrop((128, 64), padding=4), |
|||
torchvision.transforms.RandomHorizontalFlip(), |
|||
torchvision.transforms.ToTensor(), |
|||
torchvision.transforms.Normalize( |
|||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|||
]) |
|||
transform_test = torchvision.transforms.Compose([ |
|||
torchvision.transforms.Resize((128, 64)), |
|||
torchvision.transforms.ToTensor(), |
|||
torchvision.transforms.Normalize( |
|||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|||
]) |
|||
trainloader = torch.utils.data.DataLoader( |
|||
torchvision.datasets.ImageFolder(train_dir, transform=transform_train), |
|||
batch_size=64, shuffle=True |
|||
) |
|||
testloader = torch.utils.data.DataLoader( |
|||
torchvision.datasets.ImageFolder(test_dir, transform=transform_test), |
|||
batch_size=64, shuffle=True |
|||
) |
|||
num_classes = max(len(trainloader.dataset.classes), |
|||
len(testloader.dataset.classes)) |
|||
|
|||
# net definition |
|||
start_epoch = 0 |
|||
net = Net(num_classes=num_classes) |
|||
if args.resume: |
|||
assert os.path.isfile( |
|||
"./checkpoint/ckpt.t7"), "Error: no checkpoint file found!" |
|||
print('Loading from checkpoint/ckpt.t7') |
|||
checkpoint = torch.load("./checkpoint/ckpt.t7") |
|||
# import ipdb; ipdb.set_trace() |
|||
net_dict = checkpoint['net_dict'] |
|||
net.load_state_dict(net_dict) |
|||
best_acc = checkpoint['acc'] |
|||
start_epoch = checkpoint['epoch'] |
|||
net.to(device) |
|||
|
|||
# loss and optimizer |
|||
criterion = torch.nn.CrossEntropyLoss() |
|||
optimizer = torch.optim.SGD( |
|||
net.parameters(), args.lr, momentum=0.9, weight_decay=5e-4) |
|||
best_acc = 0. |
|||
|
|||
# train function for each epoch |
|||
|
|||
|
|||
def train(epoch): |
|||
print("\nEpoch : %d" % (epoch+1)) |
|||
net.train() |
|||
training_loss = 0. |
|||
train_loss = 0. |
|||
correct = 0 |
|||
total = 0 |
|||
interval = args.interval |
|||
start = time.time() |
|||
for idx, (inputs, labels) in enumerate(trainloader): |
|||
# forward |
|||
inputs, labels = inputs.to(device), labels.to(device) |
|||
outputs = net(inputs) |
|||
loss = criterion(outputs, labels) |
|||
|
|||
# backward |
|||
optimizer.zero_grad() |
|||
loss.backward() |
|||
optimizer.step() |
|||
|
|||
# accumurating |
|||
training_loss += loss.item() |
|||
train_loss += loss.item() |
|||
correct += outputs.max(dim=1)[1].eq(labels).sum().item() |
|||
total += labels.size(0) |
|||
|
|||
# print |
|||
if (idx+1) % interval == 0: |
|||
end = time.time() |
|||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format( |
|||
100.*(idx+1)/len(trainloader), end-start, training_loss / |
|||
interval, correct, total, 100.*correct/total |
|||
)) |
|||
training_loss = 0. |
|||
start = time.time() |
|||
|
|||
return train_loss/len(trainloader), 1. - correct/total |
|||
|
|||
|
|||
def test(epoch): |
|||
global best_acc |
|||
net.eval() |
|||
test_loss = 0. |
|||
correct = 0 |
|||
total = 0 |
|||
start = time.time() |
|||
with torch.no_grad(): |
|||
for idx, (inputs, labels) in enumerate(testloader): |
|||
inputs, labels = inputs.to(device), labels.to(device) |
|||
outputs = net(inputs) |
|||
loss = criterion(outputs, labels) |
|||
|
|||
test_loss += loss.item() |
|||
correct += outputs.max(dim=1)[1].eq(labels).sum().item() |
|||
total += labels.size(0) |
|||
|
|||
print("Testing ...") |
|||
end = time.time() |
|||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format( |
|||
100.*(idx+1)/len(testloader), end-start, test_loss / |
|||
len(testloader), correct, total, 100.*correct/total |
|||
)) |
|||
|
|||
# saving checkpoint |
|||
acc = 100.*correct/total |
|||
if acc > best_acc: |
|||
best_acc = acc |
|||
print("Saving parameters to checkpoint/ckpt.t7") |
|||
checkpoint = { |
|||
'net_dict': net.state_dict(), |
|||
'acc': acc, |
|||
'epoch': epoch, |
|||
} |
|||
if not os.path.isdir('checkpoint'): |
|||
os.mkdir('checkpoint') |
|||
torch.save(checkpoint, './checkpoint/ckpt.t7') |
|||
|
|||
return test_loss/len(testloader), 1. - correct/total |
|||
|
|||
|
|||
# plot figure |
|||
x_epoch = [] |
|||
record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []} |
|||
fig = plt.figure() |
|||
ax0 = fig.add_subplot(121, title="loss") |
|||
ax1 = fig.add_subplot(122, title="top1err") |
|||
|
|||
|
|||
def draw_curve(epoch, train_loss, train_err, test_loss, test_err): |
|||
global record |
|||
record['train_loss'].append(train_loss) |
|||
record['train_err'].append(train_err) |
|||
record['test_loss'].append(test_loss) |
|||
record['test_err'].append(test_err) |
|||
|
|||
x_epoch.append(epoch) |
|||
ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train') |
|||
ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val') |
|||
ax1.plot(x_epoch, record['train_err'], 'bo-', label='train') |
|||
ax1.plot(x_epoch, record['test_err'], 'ro-', label='val') |
|||
if epoch == 0: |
|||
ax0.legend() |
|||
ax1.legend() |
|||
fig.savefig("train.jpg") |
|||
|
|||
# lr decay |
|||
|
|||
|
|||
def lr_decay(): |
|||
global optimizer |
|||
for params in optimizer.param_groups: |
|||
params['lr'] *= 0.1 |
|||
lr = params['lr'] |
|||
print("Learning rate adjusted to {}".format(lr)) |
|||
|
|||
|
|||
def main(): |
|||
for epoch in range(start_epoch, start_epoch+40): |
|||
train_loss, train_err = train(epoch) |
|||
test_loss, test_err = test(epoch) |
|||
draw_curve(epoch, train_loss, train_err, test_loss, test_err) |
|||
if (epoch+1) % 20 == 0: |
|||
lr_decay() |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
main() |
@ -0,0 +1,117 @@ |
|||
import numpy as np |
|||
import torch |
|||
|
|||
from .deep.feature_extractor import Extractor |
|||
from .sort.nn_matching import NearestNeighborDistanceMetric |
|||
from .sort.detection import Detection |
|||
from .sort.tracker import Tracker |
|||
|
|||
|
|||
__all__ = ['DeepSort'] |
|||
|
|||
|
|||
class DeepSort(object): |
|||
def __init__(self, model_path, max_dist=0.2, min_confidence=0.3, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True): |
|||
self.min_confidence = min_confidence |
|||
|
|||
self.extractor = Extractor(model_path, use_cuda=use_cuda) |
|||
|
|||
max_cosine_distance = max_dist |
|||
metric = NearestNeighborDistanceMetric( |
|||
"cosine", max_cosine_distance, nn_budget) |
|||
self.tracker = Tracker( |
|||
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init) |
|||
|
|||
def update(self, bbox_xywh, confidences, classes, ori_img, use_yolo_preds=True): |
|||
self.height, self.width = ori_img.shape[:2] |
|||
# generate detections |
|||
features = self._get_features(bbox_xywh, ori_img) |
|||
bbox_tlwh = self._xywh_to_tlwh(bbox_xywh) |
|||
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate( |
|||
confidences) if conf > self.min_confidence] |
|||
|
|||
# run on non-maximum supression |
|||
boxes = np.array([d.tlwh for d in detections]) |
|||
scores = np.array([d.confidence for d in detections]) |
|||
|
|||
# update tracker |
|||
self.tracker.predict() |
|||
self.tracker.update(detections, classes) |
|||
|
|||
# output bbox identities |
|||
outputs = [] |
|||
for track in self.tracker.tracks: |
|||
if not track.is_confirmed() or track.time_since_update > 1: |
|||
continue |
|||
if use_yolo_preds: |
|||
det = track.get_yolo_pred() |
|||
x1, y1, x2, y2 = self._tlwh_to_xyxy(det.tlwh) |
|||
else: |
|||
box = track.to_tlwh() |
|||
x1, y1, x2, y2 = self._tlwh_to_xyxy(box) |
|||
track_id = track.track_id |
|||
class_id = track.class_id |
|||
outputs.append(np.array([x1, y1, x2, y2, track_id, class_id], dtype=np.int)) |
|||
if len(outputs) > 0: |
|||
outputs = np.stack(outputs, axis=0) |
|||
return outputs |
|||
|
|||
""" |
|||
TODO: |
|||
Convert bbox from xc_yc_w_h to xtl_ytl_w_h |
|||
Thanks JieChen91@github.com for reporting this bug! |
|||
""" |
|||
@staticmethod |
|||
def _xywh_to_tlwh(bbox_xywh): |
|||
if isinstance(bbox_xywh, np.ndarray): |
|||
bbox_tlwh = bbox_xywh.copy() |
|||
elif isinstance(bbox_xywh, torch.Tensor): |
|||
bbox_tlwh = bbox_xywh.clone() |
|||
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2. |
|||
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2. |
|||
return bbox_tlwh |
|||
|
|||
def _xywh_to_xyxy(self, bbox_xywh): |
|||
x, y, w, h = bbox_xywh |
|||
x1 = max(int(x - w / 2), 0) |
|||
x2 = min(int(x + w / 2), self.width - 1) |
|||
y1 = max(int(y - h / 2), 0) |
|||
y2 = min(int(y + h / 2), self.height - 1) |
|||
return x1, y1, x2, y2 |
|||
|
|||
def _tlwh_to_xyxy(self, bbox_tlwh): |
|||
""" |
|||
TODO: |
|||
Convert bbox from xtl_ytl_w_h to xc_yc_w_h |
|||
Thanks JieChen91@github.com for reporting this bug! |
|||
""" |
|||
x, y, w, h = bbox_tlwh |
|||
x1 = max(int(x), 0) |
|||
x2 = min(int(x+w), self.width - 1) |
|||
y1 = max(int(y), 0) |
|||
y2 = min(int(y+h), self.height - 1) |
|||
return x1, y1, x2, y2 |
|||
|
|||
def increment_ages(self): |
|||
self.tracker.increment_ages() |
|||
|
|||
def _xyxy_to_tlwh(self, bbox_xyxy): |
|||
x1, y1, x2, y2 = bbox_xyxy |
|||
|
|||
t = x1 |
|||
l = y1 |
|||
w = int(x2 - x1) |
|||
h = int(y2 - y1) |
|||
return t, l, w, h |
|||
|
|||
def _get_features(self, bbox_xywh, ori_img): |
|||
im_crops = [] |
|||
for box in bbox_xywh: |
|||
x1, y1, x2, y2 = self._xywh_to_xyxy(box) |
|||
im = ori_img[y1:y2, x1:x2] |
|||
im_crops.append(im) |
|||
if im_crops: |
|||
features = self.extractor(im_crops) |
|||
else: |
|||
features = np.array([]) |
|||
return features |
@ -0,0 +1,49 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
import numpy as np |
|||
|
|||
|
|||
class Detection(object): |
|||
""" |
|||
This class represents a bounding box detection in a single image. |
|||
|
|||
Parameters |
|||
---------- |
|||
tlwh : array_like |
|||
Bounding box in format `(x, y, w, h)`. |
|||
confidence : float |
|||
Detector confidence score. |
|||
feature : array_like |
|||
A feature vector that describes the object contained in this image. |
|||
|
|||
Attributes |
|||
---------- |
|||
tlwh : ndarray |
|||
Bounding box in format `(top left x, top left y, width, height)`. |
|||
confidence : ndarray |
|||
Detector confidence score. |
|||
feature : ndarray | NoneType |
|||
A feature vector that describes the object contained in this image. |
|||
|
|||
""" |
|||
|
|||
def __init__(self, tlwh, confidence, feature): |
|||
self.tlwh = np.asarray(tlwh, dtype=np.float) |
|||
self.confidence = float(confidence) |
|||
self.feature = np.asarray(feature, dtype=np.float32) |
|||
|
|||
def to_tlbr(self): |
|||
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., |
|||
`(top left, bottom right)`. |
|||
""" |
|||
ret = self.tlwh.copy() |
|||
ret[2:] += ret[:2] |
|||
return ret |
|||
|
|||
def to_xyah(self): |
|||
"""Convert bounding box to format `(center x, center y, aspect ratio, |
|||
height)`, where the aspect ratio is `width / height`. |
|||
""" |
|||
ret = self.tlwh.copy() |
|||
ret[:2] += ret[2:] / 2 |
|||
ret[2] /= ret[3] |
|||
return ret |
@ -0,0 +1,82 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
from __future__ import absolute_import |
|||
import numpy as np |
|||
from . import linear_assignment |
|||
|
|||
|
|||
def iou(bbox, candidates): |
|||
"""Computer intersection over union. |
|||
|
|||
Parameters |
|||
---------- |
|||
bbox : ndarray |
|||
A bounding box in format `(top left x, top left y, width, height)`. |
|||
candidates : ndarray |
|||
A matrix of candidate bounding boxes (one per row) in the same format |
|||
as `bbox`. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
The intersection over union in [0, 1] between the `bbox` and each |
|||
candidate. A higher score means a larger fraction of the `bbox` is |
|||
occluded by the candidate. |
|||
|
|||
""" |
|||
bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:] |
|||
candidates_tl = candidates[:, :2] |
|||
candidates_br = candidates[:, :2] + candidates[:, 2:] |
|||
|
|||
tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis], |
|||
np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]] |
|||
br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis], |
|||
np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]] |
|||
wh = np.maximum(0., br - tl) |
|||
|
|||
area_intersection = wh.prod(axis=1) |
|||
area_bbox = bbox[2:].prod() |
|||
area_candidates = candidates[:, 2:].prod(axis=1) |
|||
return area_intersection / (area_bbox + area_candidates - area_intersection) |
|||
|
|||
|
|||
def iou_cost(tracks, detections, track_indices=None, |
|||
detection_indices=None): |
|||
"""An intersection over union distance metric. |
|||
|
|||
Parameters |
|||
---------- |
|||
tracks : List[deep_sort.track.Track] |
|||
A list of tracks. |
|||
detections : List[deep_sort.detection.Detection] |
|||
A list of detections. |
|||
track_indices : Optional[List[int]] |
|||
A list of indices to tracks that should be matched. Defaults to |
|||
all `tracks`. |
|||
detection_indices : Optional[List[int]] |
|||
A list of indices to detections that should be matched. Defaults |
|||
to all `detections`. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns a cost matrix of shape |
|||
len(track_indices), len(detection_indices) where entry (i, j) is |
|||
`1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`. |
|||
|
|||
""" |
|||
if track_indices is None: |
|||
track_indices = np.arange(len(tracks)) |
|||
if detection_indices is None: |
|||
detection_indices = np.arange(len(detections)) |
|||
|
|||
cost_matrix = np.zeros((len(track_indices), len(detection_indices))) |
|||
for row, track_idx in enumerate(track_indices): |
|||
if tracks[track_idx].time_since_update > 1: |
|||
cost_matrix[row, :] = linear_assignment.INFTY_COST |
|||
continue |
|||
|
|||
bbox = tracks[track_idx].to_tlwh() |
|||
candidates = np.asarray( |
|||
[detections[i].tlwh for i in detection_indices]) |
|||
cost_matrix[row, :] = 1. - iou(bbox, candidates) |
|||
return cost_matrix |
@ -0,0 +1,227 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
import numpy as np |
|||
import scipy.linalg |
|||
|
|||
|
|||
""" |
|||
Table for the 0.95 quantile of the chi-square distribution with N degrees of |
|||
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv |
|||
function and used as Mahalanobis gating threshold. |
|||
""" |
|||
chi2inv95 = { |
|||
1: 3.8415, |
|||
2: 5.9915, |
|||
3: 7.8147, |
|||
4: 9.4877, |
|||
5: 11.070, |
|||
6: 12.592, |
|||
7: 14.067, |
|||
8: 15.507, |
|||
9: 16.919} |
|||
|
|||
|
|||
class KalmanFilter(object): |
|||
""" |
|||
A simple Kalman filter for tracking bounding boxes in image space. |
|||
|
|||
The 8-dimensional state space |
|||
|
|||
x, y, a, h, vx, vy, va, vh |
|||
|
|||
contains the bounding box center position (x, y), aspect ratio a, height h, |
|||
and their respective velocities. |
|||
|
|||
Object motion follows a constant velocity model. The bounding box location |
|||
(x, y, a, h) is taken as direct observation of the state space (linear |
|||
observation model). |
|||
|
|||
""" |
|||
|
|||
def __init__(self): |
|||
ndim, dt = 4, 1. |
|||
|
|||
# Create Kalman filter model matrices. |
|||
self._motion_mat = np.eye(2 * ndim, 2 * ndim) |
|||
for i in range(ndim): |
|||
self._motion_mat[i, ndim + i] = dt |
|||
self._update_mat = np.eye(ndim, 2 * ndim) |
|||
|
|||
# Motion and observation uncertainty are chosen relative to the current |
|||
# state estimate. These weights control the amount of uncertainty in |
|||
# the model. This is a bit hacky. |
|||
self._std_weight_position = 1. / 20 |
|||
self._std_weight_velocity = 1. / 160 |
|||
|
|||
def initiate(self, measurement): |
|||
"""Create track from unassociated measurement. |
|||
|
|||
Parameters |
|||
---------- |
|||
measurement : ndarray |
|||
Bounding box coordinates (x, y, a, h) with center position (x, y), |
|||
aspect ratio a, and height h. |
|||
|
|||
Returns |
|||
------- |
|||
(ndarray, ndarray) |
|||
Returns the mean vector (8 dimensional) and covariance matrix (8x8 |
|||
dimensional) of the new track. Unobserved velocities are initialized |
|||
to 0 mean. |
|||
|
|||
""" |
|||
mean_pos = measurement |
|||
mean_vel = np.zeros_like(mean_pos) |
|||
mean = np.r_[mean_pos, mean_vel] |
|||
|
|||
std = [ |
|||
2 * self._std_weight_position * measurement[0], # the center point x |
|||
2 * self._std_weight_position * measurement[1], # the center point y |
|||
1 * measurement[2], # the ratio of width/height |
|||
2 * self._std_weight_position * measurement[3], # the height |
|||
10 * self._std_weight_velocity * measurement[0], |
|||
10 * self._std_weight_velocity * measurement[1], |
|||
0.1 * measurement[2], |
|||
10 * self._std_weight_velocity * measurement[3]] |
|||
covariance = np.diag(np.square(std)) |
|||
return mean, covariance |
|||
|
|||
def predict(self, mean, covariance): |
|||
"""Run Kalman filter prediction step. |
|||
|
|||
Parameters |
|||
---------- |
|||
mean : ndarray |
|||
The 8 dimensional mean vector of the object state at the previous |
|||
time step. |
|||
covariance : ndarray |
|||
The 8x8 dimensional covariance matrix of the object state at the |
|||
previous time step. |
|||
|
|||
Returns |
|||
------- |
|||
(ndarray, ndarray) |
|||
Returns the mean vector and covariance matrix of the predicted |
|||
state. Unobserved velocities are initialized to 0 mean. |
|||
|
|||
""" |
|||
std_pos = [ |
|||
self._std_weight_position * mean[0], |
|||
self._std_weight_position * mean[1], |
|||
1 * mean[2], |
|||
self._std_weight_position * mean[3]] |
|||
std_vel = [ |
|||
self._std_weight_velocity * mean[0], |
|||
self._std_weight_velocity * mean[1], |
|||
0.1 * mean[2], |
|||
self._std_weight_velocity * mean[3]] |
|||
|
|||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) |
|||
mean = np.dot(self._motion_mat, mean) |
|||
covariance = np.linalg.multi_dot(( |
|||
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov |
|||
return mean, covariance |
|||
|
|||
def project(self, mean, covariance): |
|||
"""Project state distribution to measurement space. |
|||
|
|||
Parameters |
|||
---------- |
|||
mean : ndarray |
|||
The state's mean vector (8 dimensional array). |
|||
covariance : ndarray |
|||
The state's covariance matrix (8x8 dimensional). |
|||
|
|||
Returns |
|||
------- |
|||
(ndarray, ndarray) |
|||
Returns the projected mean and covariance matrix of the given state |
|||
estimate. |
|||
|
|||
""" |
|||
std = [ |
|||
self._std_weight_position * mean[0], |
|||
self._std_weight_position * mean[1], |
|||
0.1 * mean[2], |
|||
self._std_weight_position * mean[3]] |
|||
innovation_cov = np.diag(np.square(std)) |
|||
mean = np.dot(self._update_mat, mean) |
|||
covariance = np.linalg.multi_dot(( |
|||
self._update_mat, covariance, self._update_mat.T)) |
|||
return mean, covariance + innovation_cov |
|||
|
|||
def update(self, mean, covariance, measurement): |
|||
"""Run Kalman filter correction step. |
|||
|
|||
Parameters |
|||
---------- |
|||
mean : ndarray |
|||
The predicted state's mean vector (8 dimensional). |
|||
covariance : ndarray |
|||
The state's covariance matrix (8x8 dimensional). |
|||
measurement : ndarray |
|||
The 4 dimensional measurement vector (x, y, a, h), where (x, y) |
|||
is the center position, a the aspect ratio, and h the height of the |
|||
bounding box. |
|||
|
|||
Returns |
|||
------- |
|||
(ndarray, ndarray) |
|||
Returns the measurement-corrected state distribution. |
|||
|
|||
""" |
|||
projected_mean, projected_cov = self.project(mean, covariance) |
|||
|
|||
chol_factor, lower = scipy.linalg.cho_factor( |
|||
projected_cov, lower=True, check_finite=False) |
|||
kalman_gain = scipy.linalg.cho_solve( |
|||
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T, |
|||
check_finite=False).T |
|||
innovation = measurement - projected_mean |
|||
|
|||
new_mean = mean + np.dot(innovation, kalman_gain.T) |
|||
new_covariance = covariance - np.linalg.multi_dot(( |
|||
kalman_gain, projected_cov, kalman_gain.T)) |
|||
return new_mean, new_covariance |
|||
|
|||
def gating_distance(self, mean, covariance, measurements, |
|||
only_position=False): |
|||
"""Compute gating distance between state distribution and measurements. |
|||
|
|||
A suitable distance threshold can be obtained from `chi2inv95`. If |
|||
`only_position` is False, the chi-square distribution has 4 degrees of |
|||
freedom, otherwise 2. |
|||
|
|||
Parameters |
|||
---------- |
|||
mean : ndarray |
|||
Mean vector over the state distribution (8 dimensional). |
|||
covariance : ndarray |
|||
Covariance of the state distribution (8x8 dimensional). |
|||
measurements : ndarray |
|||
An Nx4 dimensional matrix of N measurements, each in |
|||
format (x, y, a, h) where (x, y) is the bounding box center |
|||
position, a the aspect ratio, and h the height. |
|||
only_position : Optional[bool] |
|||
If True, distance computation is done with respect to the bounding |
|||
box center position only. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns an array of length N, where the i-th element contains the |
|||
squared Mahalanobis distance between (mean, covariance) and |
|||
`measurements[i]`. |
|||
|
|||
""" |
|||
mean, covariance = self.project(mean, covariance) |
|||
if only_position: |
|||
mean, covariance = mean[:2], covariance[:2, :2] |
|||
measurements = measurements[:, :2] |
|||
|
|||
cholesky_factor = np.linalg.cholesky(covariance) |
|||
d = measurements - mean |
|||
z = scipy.linalg.solve_triangular( |
|||
cholesky_factor, d.T, lower=True, check_finite=False, |
|||
overwrite_b=True) |
|||
squared_maha = np.sum(z * z, axis=0) |
|||
return squared_maha |
@ -0,0 +1,192 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
from __future__ import absolute_import |
|||
import numpy as np |
|||
# from sklearn.utils.linear_assignment_ import linear_assignment |
|||
from scipy.optimize import linear_sum_assignment as linear_assignment |
|||
from . import kalman_filter |
|||
|
|||
|
|||
INFTY_COST = 1e+5 |
|||
|
|||
|
|||
def min_cost_matching( |
|||
distance_metric, max_distance, tracks, detections, track_indices=None, |
|||
detection_indices=None): |
|||
"""Solve linear assignment problem. |
|||
|
|||
Parameters |
|||
---------- |
|||
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray |
|||
The distance metric is given a list of tracks and detections as well as |
|||
a list of N track indices and M detection indices. The metric should |
|||
return the NxM dimensional cost matrix, where element (i, j) is the |
|||
association cost between the i-th track in the given track indices and |
|||
the j-th detection in the given detection_indices. |
|||
max_distance : float |
|||
Gating threshold. Associations with cost larger than this value are |
|||
disregarded. |
|||
tracks : List[track.Track] |
|||
A list of predicted tracks at the current time step. |
|||
detections : List[detection.Detection] |
|||
A list of detections at the current time step. |
|||
track_indices : List[int] |
|||
List of track indices that maps rows in `cost_matrix` to tracks in |
|||
`tracks` (see description above). |
|||
detection_indices : List[int] |
|||
List of detection indices that maps columns in `cost_matrix` to |
|||
detections in `detections` (see description above). |
|||
|
|||
Returns |
|||
------- |
|||
(List[(int, int)], List[int], List[int]) |
|||
Returns a tuple with the following three entries: |
|||
* A list of matched track and detection indices. |
|||
* A list of unmatched track indices. |
|||
* A list of unmatched detection indices. |
|||
|
|||
""" |
|||
if track_indices is None: |
|||
track_indices = np.arange(len(tracks)) |
|||
if detection_indices is None: |
|||
detection_indices = np.arange(len(detections)) |
|||
|
|||
if len(detection_indices) == 0 or len(track_indices) == 0: |
|||
return [], track_indices, detection_indices # Nothing to match. |
|||
|
|||
cost_matrix = distance_metric( |
|||
tracks, detections, track_indices, detection_indices) |
|||
cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5 |
|||
|
|||
row_indices, col_indices = linear_assignment(cost_matrix) |
|||
|
|||
matches, unmatched_tracks, unmatched_detections = [], [], [] |
|||
for col, detection_idx in enumerate(detection_indices): |
|||
if col not in col_indices: |
|||
unmatched_detections.append(detection_idx) |
|||
for row, track_idx in enumerate(track_indices): |
|||
if row not in row_indices: |
|||
unmatched_tracks.append(track_idx) |
|||
for row, col in zip(row_indices, col_indices): |
|||
track_idx = track_indices[row] |
|||
detection_idx = detection_indices[col] |
|||
if cost_matrix[row, col] > max_distance: |
|||
unmatched_tracks.append(track_idx) |
|||
unmatched_detections.append(detection_idx) |
|||
else: |
|||
matches.append((track_idx, detection_idx)) |
|||
return matches, unmatched_tracks, unmatched_detections |
|||
|
|||
|
|||
def matching_cascade( |
|||
distance_metric, max_distance, cascade_depth, tracks, detections, |
|||
track_indices=None, detection_indices=None): |
|||
"""Run matching cascade. |
|||
|
|||
Parameters |
|||
---------- |
|||
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray |
|||
The distance metric is given a list of tracks and detections as well as |
|||
a list of N track indices and M detection indices. The metric should |
|||
return the NxM dimensional cost matrix, where element (i, j) is the |
|||
association cost between the i-th track in the given track indices and |
|||
the j-th detection in the given detection indices. |
|||
max_distance : float |
|||
Gating threshold. Associations with cost larger than this value are |
|||
disregarded. |
|||
cascade_depth: int |
|||
The cascade depth, should be se to the maximum track age. |
|||
tracks : List[track.Track] |
|||
A list of predicted tracks at the current time step. |
|||
detections : List[detection.Detection] |
|||
A list of detections at the current time step. |
|||
track_indices : Optional[List[int]] |
|||
List of track indices that maps rows in `cost_matrix` to tracks in |
|||
`tracks` (see description above). Defaults to all tracks. |
|||
detection_indices : Optional[List[int]] |
|||
List of detection indices that maps columns in `cost_matrix` to |
|||
detections in `detections` (see description above). Defaults to all |
|||
detections. |
|||
|
|||
Returns |
|||
------- |
|||
(List[(int, int)], List[int], List[int]) |
|||
Returns a tuple with the following three entries: |
|||
* A list of matched track and detection indices. |
|||
* A list of unmatched track indices. |
|||
* A list of unmatched detection indices. |
|||
|
|||
""" |
|||
if track_indices is None: |
|||
track_indices = list(range(len(tracks))) |
|||
if detection_indices is None: |
|||
detection_indices = list(range(len(detections))) |
|||
|
|||
unmatched_detections = detection_indices |
|||
matches = [] |
|||
for level in range(cascade_depth): |
|||
if len(unmatched_detections) == 0: # No detections left |
|||
break |
|||
|
|||
track_indices_l = [ |
|||
k for k in track_indices |
|||
if tracks[k].time_since_update == 1 + level |
|||
] |
|||
if len(track_indices_l) == 0: # Nothing to match at this level |
|||
continue |
|||
|
|||
matches_l, _, unmatched_detections = \ |
|||
min_cost_matching( |
|||
distance_metric, max_distance, tracks, detections, |
|||
track_indices_l, unmatched_detections) |
|||
matches += matches_l |
|||
unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches)) |
|||
return matches, unmatched_tracks, unmatched_detections |
|||
|
|||
|
|||
def gate_cost_matrix( |
|||
kf, cost_matrix, tracks, detections, track_indices, detection_indices, |
|||
gated_cost=INFTY_COST, only_position=False): |
|||
"""Invalidate infeasible entries in cost matrix based on the state |
|||
distributions obtained by Kalman filtering. |
|||
|
|||
Parameters |
|||
---------- |
|||
kf : The Kalman filter. |
|||
cost_matrix : ndarray |
|||
The NxM dimensional cost matrix, where N is the number of track indices |
|||
and M is the number of detection indices, such that entry (i, j) is the |
|||
association cost between `tracks[track_indices[i]]` and |
|||
`detections[detection_indices[j]]`. |
|||
tracks : List[track.Track] |
|||
A list of predicted tracks at the current time step. |
|||
detections : List[detection.Detection] |
|||
A list of detections at the current time step. |
|||
track_indices : List[int] |
|||
List of track indices that maps rows in `cost_matrix` to tracks in |
|||
`tracks` (see description above). |
|||
detection_indices : List[int] |
|||
List of detection indices that maps columns in `cost_matrix` to |
|||
detections in `detections` (see description above). |
|||
gated_cost : Optional[float] |
|||
Entries in the cost matrix corresponding to infeasible associations are |
|||
set this value. Defaults to a very large value. |
|||
only_position : Optional[bool] |
|||
If True, only the x, y position of the state distribution is considered |
|||
during gating. Defaults to False. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns the modified cost matrix. |
|||
|
|||
""" |
|||
gating_dim = 2 if only_position else 4 |
|||
gating_threshold = kalman_filter.chi2inv95[gating_dim] |
|||
measurements = np.asarray( |
|||
[detections[i].to_xyah() for i in detection_indices]) |
|||
for row, track_idx in enumerate(track_indices): |
|||
track = tracks[track_idx] |
|||
gating_distance = kf.gating_distance( |
|||
track.mean, track.covariance, measurements, only_position) |
|||
cost_matrix[row, gating_distance > gating_threshold] = gated_cost |
|||
return cost_matrix |
@ -0,0 +1,176 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
import numpy as np |
|||
|
|||
|
|||
def _pdist(a, b): |
|||
"""Compute pair-wise squared distance between points in `a` and `b`. |
|||
|
|||
Parameters |
|||
---------- |
|||
a : array_like |
|||
An NxM matrix of N samples of dimensionality M. |
|||
b : array_like |
|||
An LxM matrix of L samples of dimensionality M. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns a matrix of size len(a), len(b) such that eleement (i, j) |
|||
contains the squared distance between `a[i]` and `b[j]`. |
|||
|
|||
""" |
|||
a, b = np.asarray(a), np.asarray(b) |
|||
if len(a) == 0 or len(b) == 0: |
|||
return np.zeros((len(a), len(b))) |
|||
a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1) |
|||
r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :] |
|||
r2 = np.clip(r2, 0., float(np.inf)) |
|||
return r2 |
|||
|
|||
|
|||
def _cosine_distance(a, b, data_is_normalized=False): |
|||
"""Compute pair-wise cosine distance between points in `a` and `b`. |
|||
|
|||
Parameters |
|||
---------- |
|||
a : array_like |
|||
An NxM matrix of N samples of dimensionality M. |
|||
b : array_like |
|||
An LxM matrix of L samples of dimensionality M. |
|||
data_is_normalized : Optional[bool] |
|||
If True, assumes rows in a and b are unit length vectors. |
|||
Otherwise, a and b are explicitly normalized to lenght 1. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns a matrix of size len(a), len(b) such that eleement (i, j) |
|||
contains the squared distance between `a[i]` and `b[j]`. |
|||
|
|||
""" |
|||
if not data_is_normalized: |
|||
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True) |
|||
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True) |
|||
return 1. - np.dot(a, b.T) |
|||
|
|||
|
|||
def _nn_euclidean_distance(x, y): |
|||
""" Helper function for nearest neighbor distance metric (Euclidean). |
|||
|
|||
Parameters |
|||
---------- |
|||
x : ndarray |
|||
A matrix of N row-vectors (sample points). |
|||
y : ndarray |
|||
A matrix of M row-vectors (query points). |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
A vector of length M that contains for each entry in `y` the |
|||
smallest Euclidean distance to a sample in `x`. |
|||
|
|||
""" |
|||
distances = _pdist(x, y) |
|||
return np.maximum(0.0, distances.min(axis=0)) |
|||
|
|||
|
|||
def _nn_cosine_distance(x, y): |
|||
""" Helper function for nearest neighbor distance metric (cosine). |
|||
|
|||
Parameters |
|||
---------- |
|||
x : ndarray |
|||
A matrix of N row-vectors (sample points). |
|||
y : ndarray |
|||
A matrix of M row-vectors (query points). |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
A vector of length M that contains for each entry in `y` the |
|||
smallest cosine distance to a sample in `x`. |
|||
|
|||
""" |
|||
distances = _cosine_distance(x, y) |
|||
return distances.min(axis=0) |
|||
|
|||
|
|||
class NearestNeighborDistanceMetric(object): |
|||
""" |
|||
A nearest neighbor distance metric that, for each target, returns |
|||
the closest distance to any sample that has been observed so far. |
|||
|
|||
Parameters |
|||
---------- |
|||
metric : str |
|||
Either "euclidean" or "cosine". |
|||
matching_threshold: float |
|||
The matching threshold. Samples with larger distance are considered an |
|||
invalid match. |
|||
budget : Optional[int] |
|||
If not None, fix samples per class to at most this number. Removes |
|||
the oldest samples when the budget is reached. |
|||
|
|||
Attributes |
|||
---------- |
|||
samples : Dict[int -> List[ndarray]] |
|||
A dictionary that maps from target identities to the list of samples |
|||
that have been observed so far. |
|||
|
|||
""" |
|||
|
|||
def __init__(self, metric, matching_threshold, budget=None): |
|||
|
|||
if metric == "euclidean": |
|||
self._metric = _nn_euclidean_distance |
|||
elif metric == "cosine": |
|||
self._metric = _nn_cosine_distance |
|||
else: |
|||
raise ValueError( |
|||
"Invalid metric; must be either 'euclidean' or 'cosine'") |
|||
self.matching_threshold = matching_threshold |
|||
self.budget = budget |
|||
self.samples = {} |
|||
|
|||
def partial_fit(self, features, targets, active_targets): |
|||
"""Update the distance metric with new data. |
|||
|
|||
Parameters |
|||
---------- |
|||
features : ndarray |
|||
An NxM matrix of N features of dimensionality M. |
|||
targets : ndarray |
|||
An integer array of associated target identities. |
|||
active_targets : List[int] |
|||
A list of targets that are currently present in the scene. |
|||
|
|||
""" |
|||
for feature, target in zip(features, targets): |
|||
self.samples.setdefault(target, []).append(feature) |
|||
if self.budget is not None: |
|||
self.samples[target] = self.samples[target][-self.budget:] |
|||
self.samples = {k: self.samples[k] for k in active_targets} |
|||
|
|||
def distance(self, features, targets): |
|||
"""Compute distance between features and targets. |
|||
|
|||
Parameters |
|||
---------- |
|||
features : ndarray |
|||
An NxM matrix of N features of dimensionality M. |
|||
targets : List[int] |
|||
A list of targets to match the given `features` against. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
Returns a cost matrix of shape len(targets), len(features), where |
|||
element (i, j) contains the closest squared distance between |
|||
`targets[i]` and `features[j]`. |
|||
|
|||
""" |
|||
cost_matrix = np.zeros((len(targets), len(features))) |
|||
for i, target in enumerate(targets): |
|||
cost_matrix[i, :] = self._metric(self.samples[target], features) |
|||
return cost_matrix |
@ -0,0 +1,73 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
import numpy as np |
|||
import cv2 |
|||
|
|||
|
|||
def non_max_suppression(boxes, max_bbox_overlap, scores=None): |
|||
"""Suppress overlapping detections. |
|||
|
|||
Original code from [1]_ has been adapted to include confidence score. |
|||
|
|||
.. [1] http://www.pyimagesearch.com/2015/02/16/ |
|||
faster-non-maximum-suppression-python/ |
|||
|
|||
Examples |
|||
-------- |
|||
|
|||
>>> boxes = [d.roi for d in detections] |
|||
>>> scores = [d.confidence for d in detections] |
|||
>>> indices = non_max_suppression(boxes, max_bbox_overlap, scores) |
|||
>>> detections = [detections[i] for i in indices] |
|||
|
|||
Parameters |
|||
---------- |
|||
boxes : ndarray |
|||
Array of ROIs (x, y, width, height). |
|||
max_bbox_overlap : float |
|||
ROIs that overlap more than this values are suppressed. |
|||
scores : Optional[array_like] |
|||
Detector confidence score. |
|||
|
|||
Returns |
|||
------- |
|||
List[int] |
|||
Returns indices of detections that have survived non-maxima suppression. |
|||
|
|||
""" |
|||
if len(boxes) == 0: |
|||
return [] |
|||
|
|||
boxes = boxes.astype(np.float) |
|||
pick = [] |
|||
|
|||
x1 = boxes[:, 0] |
|||
y1 = boxes[:, 1] |
|||
x2 = boxes[:, 2] + boxes[:, 0] |
|||
y2 = boxes[:, 3] + boxes[:, 1] |
|||
|
|||
area = (x2 - x1 + 1) * (y2 - y1 + 1) |
|||
if scores is not None: |
|||
idxs = np.argsort(scores) |
|||
else: |
|||
idxs = np.argsort(y2) |
|||
|
|||
while len(idxs) > 0: |
|||
last = len(idxs) - 1 |
|||
i = idxs[last] |
|||
pick.append(i) |
|||
|
|||
xx1 = np.maximum(x1[i], x1[idxs[:last]]) |
|||
yy1 = np.maximum(y1[i], y1[idxs[:last]]) |
|||
xx2 = np.minimum(x2[i], x2[idxs[:last]]) |
|||
yy2 = np.minimum(y2[i], y2[idxs[:last]]) |
|||
|
|||
w = np.maximum(0, xx2 - xx1 + 1) |
|||
h = np.maximum(0, yy2 - yy1 + 1) |
|||
|
|||
overlap = (w * h) / area[idxs[:last]] |
|||
|
|||
idxs = np.delete( |
|||
idxs, np.concatenate( |
|||
([last], np.where(overlap > max_bbox_overlap)[0]))) |
|||
|
|||
return pick |
@ -0,0 +1,184 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
|
|||
|
|||
class TrackState: |
|||
""" |
|||
Enumeration type for the single target track state. Newly created tracks are |
|||
classified as `tentative` until enough evidence has been collected. Then, |
|||
the track state is changed to `confirmed`. Tracks that are no longer alive |
|||
are classified as `deleted` to mark them for removal from the set of active |
|||
tracks. |
|||
|
|||
""" |
|||
|
|||
Tentative = 1 |
|||
Confirmed = 2 |
|||
Deleted = 3 |
|||
|
|||
|
|||
class Track: |
|||
""" |
|||
A single target track with state space `(x, y, a, h)` and associated |
|||
velocities, where `(x, y)` is the center of the bounding box, `a` is the |
|||
aspect ratio and `h` is the height. |
|||
|
|||
Parameters |
|||
---------- |
|||
mean : ndarray |
|||
Mean vector of the initial state distribution. |
|||
covariance : ndarray |
|||
Covariance matrix of the initial state distribution. |
|||
track_id : int |
|||
A unique track identifier. |
|||
n_init : int |
|||
Number of consecutive detections before the track is confirmed. The |
|||
track state is set to `Deleted` if a miss occurs within the first |
|||
`n_init` frames. |
|||
max_age : int |
|||
The maximum number of consecutive misses before the track state is |
|||
set to `Deleted`. |
|||
feature : Optional[ndarray] |
|||
Feature vector of the detection this track originates from. If not None, |
|||
this feature is added to the `features` cache. |
|||
|
|||
Attributes |
|||
---------- |
|||
mean : ndarray |
|||
Mean vector of the initial state distribution. |
|||
covariance : ndarray |
|||
Covariance matrix of the initial state distribution. |
|||
track_id : int |
|||
A unique track identifier. |
|||
hits : int |
|||
Total number of measurement updates. |
|||
age : int |
|||
Total number of frames since first occurance. |
|||
time_since_update : int |
|||
Total number of frames since last measurement update. |
|||
state : TrackState |
|||
The current track state. |
|||
features : List[ndarray] |
|||
A cache of features. On each measurement update, the associated feature |
|||
vector is added to this list. |
|||
|
|||
""" |
|||
|
|||
def __init__(self, mean, covariance, track_id, class_id, n_init, max_age, |
|||
feature=None): |
|||
self.mean = mean |
|||
self.covariance = covariance |
|||
self.track_id = track_id |
|||
self.class_id = class_id |
|||
self.hits = 1 |
|||
self.age = 1 |
|||
self.time_since_update = 0 |
|||
self.yolo_bbox = [0, 0, 0, 0] |
|||
|
|||
self.state = TrackState.Tentative |
|||
self.features = [] |
|||
if feature is not None: |
|||
self.features.append(feature) |
|||
|
|||
self._n_init = n_init |
|||
self._max_age = max_age |
|||
|
|||
def to_tlwh(self): |
|||
"""Get current position in bounding box format `(top left x, top left y, |
|||
width, height)`. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
The bounding box. |
|||
|
|||
""" |
|||
ret = self.mean[:4].copy() |
|||
ret[2] *= ret[3] |
|||
ret[:2] -= ret[2:] / 2 |
|||
return ret |
|||
|
|||
def to_tlbr(self): |
|||
"""Get kf estimated current position in bounding box format `(min x, miny, max x, |
|||
max y)`. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
The predicted kf bounding box. |
|||
|
|||
""" |
|||
ret = self.to_tlwh() |
|||
ret[2:] = ret[:2] + ret[2:] |
|||
return ret |
|||
|
|||
def get_yolo_pred(self): |
|||
"""Get yolo prediction`. |
|||
|
|||
Returns |
|||
------- |
|||
ndarray |
|||
The yolo bounding box. |
|||
|
|||
""" |
|||
return self.yolo_bbox |
|||
|
|||
def increment_age(self): |
|||
self.age += 1 |
|||
self.time_since_update += 1 |
|||
|
|||
def predict(self, kf): |
|||
"""Propagate the state distribution to the current time step using a |
|||
Kalman filter prediction step. |
|||
|
|||
Parameters |
|||
---------- |
|||
kf : kalman_filter.KalmanFilter |
|||
The Kalman filter. |
|||
|
|||
""" |
|||
self.mean, self.covariance = kf.predict(self.mean, self.covariance) |
|||
self.increment_age() |
|||
|
|||
def update(self, kf, detection, class_id): |
|||
"""Perform Kalman filter measurement update step and update the feature |
|||
cache. |
|||
|
|||
Parameters |
|||
---------- |
|||
kf : kalman_filter.KalmanFilter |
|||
The Kalman filter. |
|||
detection : Detection |
|||
The associated detection. |
|||
|
|||
""" |
|||
self.yolo_bbox = detection |
|||
self.mean, self.covariance = kf.update( |
|||
self.mean, self.covariance, detection.to_xyah()) |
|||
self.features.append(detection.feature) |
|||
self.class_id = class_id |
|||
|
|||
self.hits += 1 |
|||
self.time_since_update = 0 |
|||
if self.state == TrackState.Tentative and self.hits >= self._n_init: |
|||
self.state = TrackState.Confirmed |
|||
|
|||
def mark_missed(self): |
|||
"""Mark this track as missed (no association at the current time step). |
|||
""" |
|||
if self.state == TrackState.Tentative: |
|||
self.state = TrackState.Deleted |
|||
elif self.time_since_update > self._max_age: |
|||
self.state = TrackState.Deleted |
|||
|
|||
def is_tentative(self): |
|||
"""Returns True if this track is tentative (unconfirmed). |
|||
""" |
|||
return self.state == TrackState.Tentative |
|||
|
|||
def is_confirmed(self): |
|||
"""Returns True if this track is confirmed.""" |
|||
return self.state == TrackState.Confirmed |
|||
|
|||
def is_deleted(self): |
|||
"""Returns True if this track is dead and should be deleted.""" |
|||
return self.state == TrackState.Deleted |
@ -0,0 +1,143 @@ |
|||
# vim: expandtab:ts=4:sw=4 |
|||
from __future__ import absolute_import |
|||
import numpy as np |
|||
from . import kalman_filter |
|||
from . import linear_assignment |
|||
from . import iou_matching |
|||
from .track import Track |
|||
|
|||
|
|||
class Tracker: |
|||
""" |
|||
This is the multi-target tracker. |
|||
|
|||
Parameters |
|||
---------- |
|||
metric : nn_matching.NearestNeighborDistanceMetric |
|||
A distance metric for measurement-to-track association. |
|||
max_age : int |
|||
Maximum number of missed misses before a track is deleted. |
|||
n_init : int |
|||
Number of consecutive detections before the track is confirmed. The |
|||
track state is set to `Deleted` if a miss occurs within the first |
|||
`n_init` frames. |
|||
|
|||
Attributes |
|||
---------- |
|||
metric : nn_matching.NearestNeighborDistanceMetric |
|||
The distance metric used for measurement to track association. |
|||
max_age : int |
|||
Maximum number of missed misses before a track is deleted. |
|||
n_init : int |
|||
Number of frames that a track remains in initialization phase. |
|||
kf : kalman_filter.KalmanFilter |
|||
A Kalman filter to filter target trajectories in image space. |
|||
tracks : List[Track] |
|||
The list of active tracks at the current time step. |
|||
|
|||
""" |
|||
|
|||
def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3): |
|||
self.metric = metric |
|||
self.max_iou_distance = max_iou_distance |
|||
self.max_age = max_age |
|||
self.n_init = n_init |
|||
|
|||
self.kf = kalman_filter.KalmanFilter() |
|||
self.tracks = [] |
|||
self._next_id = 1 |
|||
|
|||
def predict(self): |
|||
"""Propagate track state distributions one time step forward. |
|||
|
|||
This function should be called once every time step, before `update`. |
|||
""" |
|||
for track in self.tracks: |
|||
track.predict(self.kf) |
|||
|
|||
def increment_ages(self): |
|||
for track in self.tracks: |
|||
track.increment_age() |
|||
track.mark_missed() |
|||
|
|||
def update(self, detections, classes): |
|||
"""Perform measurement update and track management. |
|||
|
|||
Parameters |
|||
---------- |
|||
detections : List[deep_sort.detection.Detection] |
|||
A list of detections at the current time step. |
|||
|
|||
""" |
|||
# Run matching cascade. |
|||
matches, unmatched_tracks, unmatched_detections = \ |
|||
self._match(detections) |
|||
|
|||
# Update track set. |
|||
for track_idx, detection_idx in matches: |
|||
self.tracks[track_idx].update( |
|||
self.kf, detections[detection_idx], classes[detection_idx]) |
|||
for track_idx in unmatched_tracks: |
|||
self.tracks[track_idx].mark_missed() |
|||
for detection_idx in unmatched_detections: |
|||
self._initiate_track(detections[detection_idx], classes[detection_idx].item()) |
|||
self.tracks = [t for t in self.tracks if not t.is_deleted()] |
|||
|
|||
# Update distance metric. |
|||
active_targets = [t.track_id for t in self.tracks if t.is_confirmed()] |
|||
features, targets = [], [] |
|||
for track in self.tracks: |
|||
if not track.is_confirmed(): |
|||
continue |
|||
features += track.features |
|||
targets += [track.track_id for _ in track.features] |
|||
track.features = [] |
|||
self.metric.partial_fit( |
|||
np.asarray(features), np.asarray(targets), active_targets) |
|||
|
|||
def _match(self, detections): |
|||
|
|||
def gated_metric(tracks, dets, track_indices, detection_indices): |
|||
features = np.array([dets[i].feature for i in detection_indices]) |
|||
targets = np.array([tracks[i].track_id for i in track_indices]) |
|||
cost_matrix = self.metric.distance(features, targets) |
|||
cost_matrix = linear_assignment.gate_cost_matrix( |
|||
self.kf, cost_matrix, tracks, dets, track_indices, |
|||
detection_indices) |
|||
|
|||
return cost_matrix |
|||
|
|||
# Split track set into confirmed and unconfirmed tracks. |
|||
confirmed_tracks = [ |
|||
i for i, t in enumerate(self.tracks) if t.is_confirmed()] |
|||
unconfirmed_tracks = [ |
|||
i for i, t in enumerate(self.tracks) if not t.is_confirmed()] |
|||
|
|||
# Associate confirmed tracks using appearance features. |
|||
matches_a, unmatched_tracks_a, unmatched_detections = \ |
|||
linear_assignment.matching_cascade( |
|||
gated_metric, self.metric.matching_threshold, self.max_age, |
|||
self.tracks, detections, confirmed_tracks) |
|||
|
|||
# Associate remaining tracks together with unconfirmed tracks using IOU. |
|||
iou_track_candidates = unconfirmed_tracks + [ |
|||
k for k in unmatched_tracks_a if |
|||
self.tracks[k].time_since_update == 1] |
|||
unmatched_tracks_a = [ |
|||
k for k in unmatched_tracks_a if |
|||
self.tracks[k].time_since_update != 1] |
|||
matches_b, unmatched_tracks_b, unmatched_detections = \ |
|||
linear_assignment.min_cost_matching( |
|||
iou_matching.iou_cost, self.max_iou_distance, self.tracks, |
|||
detections, iou_track_candidates, unmatched_detections) |
|||
|
|||
matches = matches_a + matches_b |
|||
unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b)) |
|||
return matches, unmatched_tracks, unmatched_detections |
|||
|
|||
def _initiate_track(self, detection, class_id): |
|||
mean, covariance = self.kf.initiate(detection.to_xyah()) |
|||
self.tracks.append(Track( |
|||
mean, covariance, self._next_id, class_id, self.n_init, self.max_age, |
|||
detection.feature)) |
|||
self._next_id += 1 |
@ -0,0 +1,13 @@ |
|||
from os import environ |
|||
|
|||
|
|||
def assert_in(file, files_to_check): |
|||
if file not in files_to_check: |
|||
raise AssertionError("{} does not exist in the list".format(str(file))) |
|||
return True |
|||
|
|||
|
|||
def assert_in_env(check_list: list): |
|||
for item in check_list: |
|||
assert_in(item, environ.keys()) |
|||
return True |
@ -0,0 +1,36 @@ |
|||
import numpy as np |
|||
import cv2 |
|||
|
|||
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|||
|
|||
|
|||
def compute_color_for_labels(label): |
|||
""" |
|||
Simple function that adds fixed color depending on the class |
|||
""" |
|||
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette] |
|||
return tuple(color) |
|||
|
|||
|
|||
def draw_boxes(img, bbox, identities=None, offset=(0,0)): |
|||
for i,box in enumerate(bbox): |
|||
x1,y1,x2,y2 = [int(i) for i in box] |
|||
x1 += offset[0] |
|||
x2 += offset[0] |
|||
y1 += offset[1] |
|||
y2 += offset[1] |
|||
# box text and bar |
|||
id = int(identities[i]) if identities is not None else 0 |
|||
color = compute_color_for_labels(id) |
|||
label = '{}{:d}'.format("", id) |
|||
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] |
|||
cv2.rectangle(img,(x1, y1),(x2,y2),color,3) |
|||
cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) |
|||
cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2) |
|||
return img |
|||
|
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
for i in range(82): |
|||
print(compute_color_for_labels(i)) |
@ -0,0 +1,103 @@ |
|||
import os |
|||
import numpy as np |
|||
import copy |
|||
import motmetrics as mm |
|||
mm.lap.default_solver = 'lap' |
|||
from utils.io import read_results, unzip_objs |
|||
|
|||
|
|||
class Evaluator(object): |
|||
|
|||
def __init__(self, data_root, seq_name, data_type): |
|||
self.data_root = data_root |
|||
self.seq_name = seq_name |
|||
self.data_type = data_type |
|||
|
|||
self.load_annotations() |
|||
self.reset_accumulator() |
|||
|
|||
def load_annotations(self): |
|||
assert self.data_type == 'mot' |
|||
|
|||
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', 'gt.txt') |
|||
self.gt_frame_dict = read_results(gt_filename, self.data_type, is_gt=True) |
|||
self.gt_ignore_frame_dict = read_results(gt_filename, self.data_type, is_ignore=True) |
|||
|
|||
def reset_accumulator(self): |
|||
self.acc = mm.MOTAccumulator(auto_id=True) |
|||
|
|||
def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False): |
|||
# results |
|||
trk_tlwhs = np.copy(trk_tlwhs) |
|||
trk_ids = np.copy(trk_ids) |
|||
|
|||
# gts |
|||
gt_objs = self.gt_frame_dict.get(frame_id, []) |
|||
gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2] |
|||
|
|||
# ignore boxes |
|||
ignore_objs = self.gt_ignore_frame_dict.get(frame_id, []) |
|||
ignore_tlwhs = unzip_objs(ignore_objs)[0] |
|||
|
|||
|
|||
# remove ignored results |
|||
keep = np.ones(len(trk_tlwhs), dtype=bool) |
|||
iou_distance = mm.distances.iou_matrix(ignore_tlwhs, trk_tlwhs, max_iou=0.5) |
|||
if len(iou_distance) > 0: |
|||
match_is, match_js = mm.lap.linear_sum_assignment(iou_distance) |
|||
match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js]) |
|||
match_ious = iou_distance[match_is, match_js] |
|||
|
|||
match_js = np.asarray(match_js, dtype=int) |
|||
match_js = match_js[np.logical_not(np.isnan(match_ious))] |
|||
keep[match_js] = False |
|||
trk_tlwhs = trk_tlwhs[keep] |
|||
trk_ids = trk_ids[keep] |
|||
|
|||
# get distance matrix |
|||
iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5) |
|||
|
|||
# acc |
|||
self.acc.update(gt_ids, trk_ids, iou_distance) |
|||
|
|||
if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'last_mot_events'): |
|||
events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics |
|||
else: |
|||
events = None |
|||
return events |
|||
|
|||
def eval_file(self, filename): |
|||
self.reset_accumulator() |
|||
|
|||
result_frame_dict = read_results(filename, self.data_type, is_gt=False) |
|||
frames = sorted(list(set(self.gt_frame_dict.keys()) | set(result_frame_dict.keys()))) |
|||
for frame_id in frames: |
|||
trk_objs = result_frame_dict.get(frame_id, []) |
|||
trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2] |
|||
self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False) |
|||
|
|||
return self.acc |
|||
|
|||
@staticmethod |
|||
def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')): |
|||
names = copy.deepcopy(names) |
|||
if metrics is None: |
|||
metrics = mm.metrics.motchallenge_metrics |
|||
metrics = copy.deepcopy(metrics) |
|||
|
|||
mh = mm.metrics.create() |
|||
summary = mh.compute_many( |
|||
accs, |
|||
metrics=metrics, |
|||
names=names, |
|||
generate_overall=True |
|||
) |
|||
|
|||
return summary |
|||
|
|||
@staticmethod |
|||
def save_summary(summary, filename): |
|||
import pandas as pd |
|||
writer = pd.ExcelWriter(filename) |
|||
summary.to_excel(writer) |
|||
writer.save() |
@ -0,0 +1,841 @@ |
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|||
""" |
|||
General utils |
|||
""" |
|||
|
|||
import contextlib |
|||
import glob |
|||
import logging |
|||
import math |
|||
import os |
|||
import platform |
|||
import random |
|||
import re |
|||
import shutil |
|||
import signal |
|||
import time |
|||
import urllib |
|||
from itertools import repeat |
|||
from multiprocessing.pool import ThreadPool |
|||
from pathlib import Path |
|||
from subprocess import check_output |
|||
from zipfile import ZipFile |
|||
|
|||
import cv2 |
|||
import numpy as np |
|||
import pandas as pd |
|||
import pkg_resources as pkg |
|||
import torch |
|||
import torchvision |
|||
import yaml |
|||
|
|||
from utils.downloads import gsutil_getsize |
|||
from utils.metrics import box_iou, fitness |
|||
|
|||
# Settings |
|||
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 |
|||
pd.options.display.max_columns = 10 |
|||
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) |
|||
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads |
|||
|
|||
FILE = Path(__file__).resolve() |
|||
ROOT = FILE.parents[1] # YOLOv5 root directory |
|||
|
|||
|
|||
def set_logging(name=None, verbose=True): |
|||
# Sets level and returns logger |
|||
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings |
|||
logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING) |
|||
return logging.getLogger(name) |
|||
|
|||
|
|||
LOGGER = set_logging(__name__) # define globally (used in train.py, val.py, detect.py, etc.) |
|||
|
|||
|
|||
class Profile(contextlib.ContextDecorator): |
|||
# Usage: @Profile() decorator or 'with Profile():' context manager |
|||
def __enter__(self): |
|||
self.start = time.time() |
|||
|
|||
def __exit__(self, type, value, traceback): |
|||
print(f'Profile results: {time.time() - self.start:.5f}s') |
|||
|
|||
|
|||
class Timeout(contextlib.ContextDecorator): |
|||
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager |
|||
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): |
|||
self.seconds = int(seconds) |
|||
self.timeout_message = timeout_msg |
|||
self.suppress = bool(suppress_timeout_errors) |
|||
|
|||
def _timeout_handler(self, signum, frame): |
|||
raise TimeoutError(self.timeout_message) |
|||
|
|||
def __enter__(self): |
|||
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM |
|||
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised |
|||
|
|||
def __exit__(self, exc_type, exc_val, exc_tb): |
|||
signal.alarm(0) # Cancel SIGALRM if it's scheduled |
|||
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError |
|||
return True |
|||
|
|||
|
|||
class WorkingDirectory(contextlib.ContextDecorator): |
|||
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager |
|||
def __init__(self, new_dir): |
|||
self.dir = new_dir # new dir |
|||
self.cwd = Path.cwd().resolve() # current dir |
|||
|
|||
def __enter__(self): |
|||
os.chdir(self.dir) |
|||
|
|||
def __exit__(self, exc_type, exc_val, exc_tb): |
|||
os.chdir(self.cwd) |
|||
|
|||
|
|||
def try_except(func): |
|||
# try-except function. Usage: @try_except decorator |
|||
def handler(*args, **kwargs): |
|||
try: |
|||
func(*args, **kwargs) |
|||
except Exception as e: |
|||
print(e) |
|||
|
|||
return handler |
|||
|
|||
|
|||
def methods(instance): |
|||
# Get class/instance methods |
|||
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] |
|||
|
|||
|
|||
def print_args(name, opt): |
|||
# Print argparser arguments |
|||
LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) |
|||
|
|||
|
|||
def init_seeds(seed=0): |
|||
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html |
|||
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible |
|||
import torch.backends.cudnn as cudnn |
|||
random.seed(seed) |
|||
np.random.seed(seed) |
|||
torch.manual_seed(seed) |
|||
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) |
|||
|
|||
|
|||
def intersect_dicts(da, db, exclude=()): |
|||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values |
|||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} |
|||
|
|||
|
|||
def get_latest_run(search_dir='.'): |
|||
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) |
|||
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|||
return max(last_list, key=os.path.getctime) if last_list else '' |
|||
|
|||
|
|||
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): |
|||
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. |
|||
env = os.getenv(env_var) |
|||
if env: |
|||
path = Path(env) # use environment variable |
|||
else: |
|||
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs |
|||
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir |
|||
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable |
|||
path.mkdir(exist_ok=True) # make if required |
|||
return path |
|||
|
|||
|
|||
def is_writeable(dir, test=False): |
|||
# Return True if directory has write permissions, test opening a file with write permissions if test=True |
|||
if test: # method 1 |
|||
file = Path(dir) / 'tmp.txt' |
|||
try: |
|||
with open(file, 'w'): # open file with write permissions |
|||
pass |
|||
file.unlink() # remove file |
|||
return True |
|||
except OSError: |
|||
return False |
|||
else: # method 2 |
|||
return os.access(dir, os.R_OK) # possible issues on Windows |
|||
|
|||
|
|||
def is_docker(): |
|||
# Is environment a Docker container? |
|||
return Path('/workspace').exists() # or Path('/.dockerenv').exists() |
|||
|
|||
|
|||
def is_colab(): |
|||
# Is environment a Google Colab instance? |
|||
try: |
|||
import google.colab |
|||
return True |
|||
except ImportError: |
|||
return False |
|||
|
|||
|
|||
def is_pip(): |
|||
# Is file in a pip package? |
|||
return 'site-packages' in Path(__file__).resolve().parts |
|||
|
|||
|
|||
def is_ascii(s=''): |
|||
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) |
|||
s = str(s) # convert list, tuple, None, etc. to str |
|||
return len(s.encode().decode('ascii', 'ignore')) == len(s) |
|||
|
|||
|
|||
def is_chinese(s='人工智能'): |
|||
# Is string composed of any Chinese characters? |
|||
return re.search('[\u4e00-\u9fff]', s) |
|||
|
|||
|
|||
def emojis(str=''): |
|||
# Return platform-dependent emoji-safe version of string |
|||
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str |
|||
|
|||
|
|||
def file_size(path): |
|||
# Return file/dir size (MB) |
|||
path = Path(path) |
|||
if path.is_file(): |
|||
return path.stat().st_size / 1E6 |
|||
elif path.is_dir(): |
|||
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6 |
|||
else: |
|||
return 0.0 |
|||
|
|||
|
|||
def check_online(): |
|||
# Check internet connectivity |
|||
import socket |
|||
try: |
|||
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility |
|||
return True |
|||
except OSError: |
|||
return False |
|||
|
|||
|
|||
@try_except |
|||
@WorkingDirectory(ROOT) |
|||
def check_git_status(): |
|||
# Recommend 'git pull' if code is out of date |
|||
msg = ', for updates see https://github.com/ultralytics/yolov5' |
|||
print(colorstr('github: '), end='') |
|||
assert Path('.git').exists(), 'skipping check (not a git repository)' + msg |
|||
assert not is_docker(), 'skipping check (Docker image)' + msg |
|||
assert check_online(), 'skipping check (offline)' + msg |
|||
|
|||
cmd = 'git fetch && git config --get remote.origin.url' |
|||
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch |
|||
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out |
|||
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind |
|||
if n > 0: |
|||
s = f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update." |
|||
else: |
|||
s = f'up to date with {url} ✅' |
|||
print(emojis(s)) # emoji-safe |
|||
|
|||
|
|||
def check_python(minimum='3.6.2'): |
|||
# Check current python version vs. required python version |
|||
check_version(platform.python_version(), minimum, name='Python ', hard=True) |
|||
|
|||
|
|||
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False): |
|||
# Check version vs. required version |
|||
current, minimum = (pkg.parse_version(x) for x in (current, minimum)) |
|||
result = (current == minimum) if pinned else (current >= minimum) # bool |
|||
if hard: # assert min requirements met |
|||
assert result, f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' |
|||
else: |
|||
return result |
|||
|
|||
|
|||
@try_except |
|||
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True): |
|||
# Check installed dependencies meet requirements (pass *.txt file or list of packages) |
|||
prefix = colorstr('red', 'bold', 'requirements:') |
|||
check_python() # check python version |
|||
if isinstance(requirements, (str, Path)): # requirements.txt file |
|||
file = Path(requirements) |
|||
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed." |
|||
with file.open() as f: |
|||
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] |
|||
else: # list or tuple of packages |
|||
requirements = [x for x in requirements if x not in exclude] |
|||
|
|||
n = 0 # number of packages updates |
|||
for r in requirements: |
|||
try: |
|||
pkg.require(r) |
|||
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met |
|||
s = f"{prefix} {r} not found and is required by YOLOv5" |
|||
if install: |
|||
print(f"{s}, attempting auto-update...") |
|||
try: |
|||
assert check_online(), f"'pip install {r}' skipped (offline)" |
|||
print(check_output(f"pip install '{r}'", shell=True).decode()) |
|||
n += 1 |
|||
except Exception as e: |
|||
print(f'{prefix} {e}') |
|||
else: |
|||
print(f'{s}. Please install and rerun your command.') |
|||
|
|||
if n: # if packages updated |
|||
source = file.resolve() if 'file' in locals() else requirements |
|||
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ |
|||
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" |
|||
print(emojis(s)) |
|||
|
|||
|
|||
def check_img_size(imgsz, s=32, floor=0): |
|||
# Verify image size is a multiple of stride s in each dimension |
|||
if isinstance(imgsz, int): # integer i.e. img_size=640 |
|||
new_size = max(make_divisible(imgsz, int(s)), floor) |
|||
else: # list i.e. img_size=[640, 480] |
|||
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] |
|||
if new_size != imgsz: |
|||
print(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') |
|||
return new_size |
|||
|
|||
|
|||
def check_imshow(): |
|||
# Check if environment supports image displays |
|||
try: |
|||
assert not is_docker(), 'cv2.imshow() is disabled in Docker environments' |
|||
assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments' |
|||
cv2.imshow('test', np.zeros((1, 1, 3))) |
|||
cv2.waitKey(1) |
|||
cv2.destroyAllWindows() |
|||
cv2.waitKey(1) |
|||
return True |
|||
except Exception as e: |
|||
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') |
|||
return False |
|||
|
|||
|
|||
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): |
|||
# Check file(s) for acceptable suffix |
|||
if file and suffix: |
|||
if isinstance(suffix, str): |
|||
suffix = [suffix] |
|||
for f in file if isinstance(file, (list, tuple)) else [file]: |
|||
s = Path(f).suffix.lower() # file suffix |
|||
if len(s): |
|||
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" |
|||
|
|||
|
|||
def check_yaml(file, suffix=('.yaml', '.yml')): |
|||
# Search/download YAML file (if necessary) and return path, checking suffix |
|||
return check_file(file, suffix) |
|||
|
|||
|
|||
def check_file(file, suffix=''): |
|||
# Search/download file (if necessary) and return path |
|||
check_suffix(file, suffix) # optional |
|||
file = str(file) # convert to str() |
|||
if Path(file).is_file() or file == '': # exists |
|||
return file |
|||
elif file.startswith(('http:/', 'https:/')): # download |
|||
url = str(Path(file)).replace(':/', '://') # Pathlib turns :// -> :/ |
|||
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth |
|||
if Path(file).is_file(): |
|||
print(f'Found {url} locally at {file}') # file already exists |
|||
else: |
|||
print(f'Downloading {url} to {file}...') |
|||
torch.hub.download_url_to_file(url, file) |
|||
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check |
|||
return file |
|||
else: # search |
|||
files = [] |
|||
for d in 'data', 'models', 'utils': # search directories |
|||
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file |
|||
assert len(files), f'File not found: {file}' # assert file was found |
|||
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique |
|||
return files[0] # return file |
|||
|
|||
|
|||
def check_dataset(data, autodownload=True): |
|||
# Download and/or unzip dataset if not found locally |
|||
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip |
|||
|
|||
# Download (optional) |
|||
extract_dir = '' |
|||
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip |
|||
download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1) |
|||
data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml')) |
|||
extract_dir, autodownload = data.parent, False |
|||
|
|||
# Read yaml (optional) |
|||
if isinstance(data, (str, Path)): |
|||
with open(data, errors='ignore') as f: |
|||
data = yaml.safe_load(f) # dictionary |
|||
|
|||
# Parse yaml |
|||
path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.' |
|||
for k in 'train', 'val', 'test': |
|||
if data.get(k): # prepend path |
|||
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] |
|||
|
|||
assert 'nc' in data, "Dataset 'nc' key missing." |
|||
if 'names' not in data: |
|||
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing |
|||
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) |
|||
if val: |
|||
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|||
if not all(x.exists() for x in val): |
|||
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) |
|||
if s and autodownload: # download script |
|||
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../' |
|||
if s.startswith('http') and s.endswith('.zip'): # URL |
|||
f = Path(s).name # filename |
|||
print(f'Downloading {s} to {f}...') |
|||
torch.hub.download_url_to_file(s, f) |
|||
Path(root).mkdir(parents=True, exist_ok=True) # create root |
|||
ZipFile(f).extractall(path=root) # unzip |
|||
Path(f).unlink() # remove zip |
|||
r = None # success |
|||
elif s.startswith('bash '): # bash script |
|||
print(f'Running {s} ...') |
|||
r = os.system(s) |
|||
else: # python script |
|||
r = exec(s, {'yaml': data}) # return None |
|||
print(f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n") |
|||
else: |
|||
raise Exception('Dataset not found.') |
|||
|
|||
return data # dictionary |
|||
|
|||
|
|||
def url2file(url): |
|||
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt |
|||
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ |
|||
file = Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth |
|||
return file |
|||
|
|||
|
|||
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1): |
|||
# Multi-threaded file download and unzip function, used in data.yaml for autodownload |
|||
def download_one(url, dir): |
|||
# Download 1 file |
|||
f = dir / Path(url).name # filename |
|||
if Path(url).is_file(): # exists in current path |
|||
Path(url).rename(f) # move to dir |
|||
elif not f.exists(): |
|||
print(f'Downloading {url} to {f}...') |
|||
if curl: |
|||
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail |
|||
else: |
|||
torch.hub.download_url_to_file(url, f, progress=True) # torch download |
|||
if unzip and f.suffix in ('.zip', '.gz'): |
|||
print(f'Unzipping {f}...') |
|||
if f.suffix == '.zip': |
|||
ZipFile(f).extractall(path=dir) # unzip |
|||
elif f.suffix == '.gz': |
|||
os.system(f'tar xfz {f} --directory {f.parent}') # unzip |
|||
if delete: |
|||
f.unlink() # remove zip |
|||
|
|||
dir = Path(dir) |
|||
dir.mkdir(parents=True, exist_ok=True) # make directory |
|||
if threads > 1: |
|||
pool = ThreadPool(threads) |
|||
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded |
|||
pool.close() |
|||
pool.join() |
|||
else: |
|||
for u in [url] if isinstance(url, (str, Path)) else url: |
|||
download_one(u, dir) |
|||
|
|||
|
|||
def make_divisible(x, divisor): |
|||
# Returns x evenly divisible by divisor |
|||
return math.ceil(x / divisor) * divisor |
|||
|
|||
|
|||
def clean_str(s): |
|||
# Cleans a string by replacing special characters with underscore _ |
|||
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) |
|||
|
|||
|
|||
def one_cycle(y1=0.0, y2=1.0, steps=100): |
|||
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf |
|||
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 |
|||
|
|||
|
|||
def colorstr(*input): |
|||
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') |
|||
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string |
|||
colors = {'black': '\033[30m', # basic colors |
|||
'red': '\033[31m', |
|||
'green': '\033[32m', |
|||
'yellow': '\033[33m', |
|||
'blue': '\033[34m', |
|||
'magenta': '\033[35m', |
|||
'cyan': '\033[36m', |
|||
'white': '\033[37m', |
|||
'bright_black': '\033[90m', # bright colors |
|||
'bright_red': '\033[91m', |
|||
'bright_green': '\033[92m', |
|||
'bright_yellow': '\033[93m', |
|||
'bright_blue': '\033[94m', |
|||
'bright_magenta': '\033[95m', |
|||
'bright_cyan': '\033[96m', |
|||
'bright_white': '\033[97m', |
|||
'end': '\033[0m', # misc |
|||
'bold': '\033[1m', |
|||
'underline': '\033[4m'} |
|||
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] |
|||
|
|||
|
|||
def labels_to_class_weights(labels, nc=80): |
|||
# Get class weights (inverse frequency) from training labels |
|||
if labels[0] is None: # no labels loaded |
|||
return torch.Tensor() |
|||
|
|||
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO |
|||
classes = labels[:, 0].astype(np.int) # labels = [class xywh] |
|||
weights = np.bincount(classes, minlength=nc) # occurrences per class |
|||
|
|||
# Prepend gridpoint count (for uCE training) |
|||
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image |
|||
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start |
|||
|
|||
weights[weights == 0] = 1 # replace empty bins with 1 |
|||
weights = 1 / weights # number of targets per class |
|||
weights /= weights.sum() # normalize |
|||
return torch.from_numpy(weights) |
|||
|
|||
|
|||
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|||
# Produces image weights based on class_weights and image contents |
|||
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) |
|||
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) |
|||
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample |
|||
return image_weights |
|||
|
|||
|
|||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) |
|||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ |
|||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|||
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|||
return x |
|||
|
|||
|
|||
def xyxy2xywh(x): |
|||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center |
|||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center |
|||
y[:, 2] = x[:, 2] - x[:, 0] # width |
|||
y[:, 3] = x[:, 3] - x[:, 1] # height |
|||
return y |
|||
|
|||
|
|||
def xywh2xyxy(x): |
|||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x |
|||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y |
|||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x |
|||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y |
|||
return y |
|||
|
|||
|
|||
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): |
|||
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x |
|||
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y |
|||
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x |
|||
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y |
|||
return y |
|||
|
|||
|
|||
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): |
|||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right |
|||
if clip: |
|||
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center |
|||
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center |
|||
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width |
|||
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height |
|||
return y |
|||
|
|||
|
|||
def xyn2xy(x, w=640, h=640, padw=0, padh=0): |
|||
# Convert normalized segments into pixel segments, shape (n,2) |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = w * x[:, 0] + padw # top left x |
|||
y[:, 1] = h * x[:, 1] + padh # top left y |
|||
return y |
|||
|
|||
|
|||
def segment2box(segment, width=640, height=640): |
|||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) |
|||
x, y = segment.T # segment xy |
|||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) |
|||
x, y, = x[inside], y[inside] |
|||
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy |
|||
|
|||
|
|||
def segments2boxes(segments): |
|||
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) |
|||
boxes = [] |
|||
for s in segments: |
|||
x, y = s.T # segment xy |
|||
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy |
|||
return xyxy2xywh(np.array(boxes)) # cls, xywh |
|||
|
|||
|
|||
def resample_segments(segments, n=1000): |
|||
# Up-sample an (n,2) segment |
|||
for i, s in enumerate(segments): |
|||
x = np.linspace(0, len(s) - 1, n) |
|||
xp = np.arange(len(s)) |
|||
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy |
|||
return segments |
|||
|
|||
|
|||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): |
|||
# Rescale coords (xyxy) from img1_shape to img0_shape |
|||
if ratio_pad is None: # calculate from img0_shape |
|||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new |
|||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding |
|||
else: |
|||
gain = ratio_pad[0][0] |
|||
pad = ratio_pad[1] |
|||
|
|||
coords[:, [0, 2]] -= pad[0] # x padding |
|||
coords[:, [1, 3]] -= pad[1] # y padding |
|||
coords[:, :4] /= gain |
|||
clip_coords(coords, img0_shape) |
|||
return coords |
|||
|
|||
|
|||
def clip_coords(boxes, shape): |
|||
# Clip bounding xyxy bounding boxes to image shape (height, width) |
|||
if isinstance(boxes, torch.Tensor): # faster individually |
|||
boxes[:, 0].clamp_(0, shape[1]) # x1 |
|||
boxes[:, 1].clamp_(0, shape[0]) # y1 |
|||
boxes[:, 2].clamp_(0, shape[1]) # x2 |
|||
boxes[:, 3].clamp_(0, shape[0]) # y2 |
|||
else: # np.array (faster grouped) |
|||
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 |
|||
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 |
|||
|
|||
|
|||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, |
|||
labels=(), max_det=300): |
|||
"""Runs Non-Maximum Suppression (NMS) on inference results |
|||
|
|||
Returns: |
|||
list of detections, on (n,6) tensor per image [xyxy, conf, cls] |
|||
""" |
|||
|
|||
nc = prediction.shape[2] - 5 # number of classes |
|||
xc = prediction[..., 4] > conf_thres # candidates |
|||
|
|||
# Checks |
|||
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' |
|||
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' |
|||
|
|||
# Settings |
|||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height |
|||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|||
time_limit = 10.0 # seconds to quit after |
|||
redundant = True # require redundant detections |
|||
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) |
|||
merge = False # use merge-NMS |
|||
|
|||
t = time.time() |
|||
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] |
|||
for xi, x in enumerate(prediction): # image index, image inference |
|||
# Apply constraints |
|||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|||
x = x[xc[xi]] # confidence |
|||
|
|||
# Cat apriori labels if autolabelling |
|||
if labels and len(labels[xi]): |
|||
l = labels[xi] |
|||
v = torch.zeros((len(l), nc + 5), device=x.device) |
|||
v[:, :4] = l[:, 1:5] # box |
|||
v[:, 4] = 1.0 # conf |
|||
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls |
|||
x = torch.cat((x, v), 0) |
|||
|
|||
# If none remain process next image |
|||
if not x.shape[0]: |
|||
continue |
|||
|
|||
# Compute conf |
|||
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf |
|||
|
|||
# Box (center x, center y, width, height) to (x1, y1, x2, y2) |
|||
box = xywh2xyxy(x[:, :4]) |
|||
|
|||
# Detections matrix nx6 (xyxy, conf, cls) |
|||
if multi_label: |
|||
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T |
|||
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|||
else: # best class only |
|||
conf, j = x[:, 5:].max(1, keepdim=True) |
|||
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|||
|
|||
# Filter by class |
|||
if classes is not None: |
|||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|||
|
|||
# Apply finite constraint |
|||
# if not torch.isfinite(x).all(): |
|||
# x = x[torch.isfinite(x).all(1)] |
|||
|
|||
# Check shape |
|||
n = x.shape[0] # number of boxes |
|||
if not n: # no boxes |
|||
continue |
|||
elif n > max_nms: # excess boxes |
|||
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence |
|||
|
|||
# Batched NMS |
|||
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes |
|||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores |
|||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS |
|||
if i.shape[0] > max_det: # limit detections |
|||
i = i[:max_det] |
|||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) |
|||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) |
|||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix |
|||
weights = iou * scores[None] # box weights |
|||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes |
|||
if redundant: |
|||
i = i[iou.sum(1) > 1] # require redundancy |
|||
|
|||
output[xi] = x[i] |
|||
if (time.time() - t) > time_limit: |
|||
print(f'WARNING: NMS time limit {time_limit}s exceeded') |
|||
break # time limit exceeded |
|||
|
|||
return output |
|||
|
|||
|
|||
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() |
|||
# Strip optimizer from 'f' to finalize training, optionally save as 's' |
|||
x = torch.load(f, map_location=torch.device('cpu')) |
|||
if x.get('ema'): |
|||
x['model'] = x['ema'] # replace model with ema |
|||
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys |
|||
x[k] = None |
|||
x['epoch'] = -1 |
|||
x['model'].half() # to FP16 |
|||
for p in x['model'].parameters(): |
|||
p.requires_grad = False |
|||
torch.save(x, s or f) |
|||
mb = os.path.getsize(s or f) / 1E6 # filesize |
|||
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") |
|||
|
|||
|
|||
def print_mutation(results, hyp, save_dir, bucket): |
|||
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml' |
|||
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|||
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps] |
|||
keys = tuple(x.strip() for x in keys) |
|||
vals = results + tuple(hyp.values()) |
|||
n = len(keys) |
|||
|
|||
# Download (optional) |
|||
if bucket: |
|||
url = f'gs://{bucket}/evolve.csv' |
|||
if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0): |
|||
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local |
|||
|
|||
# Log to evolve.csv |
|||
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header |
|||
with open(evolve_csv, 'a') as f: |
|||
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') |
|||
|
|||
# Print to screen |
|||
print(colorstr('evolve: ') + ', '.join(f'{x.strip():>20s}' for x in keys)) |
|||
print(colorstr('evolve: ') + ', '.join(f'{x:20.5g}' for x in vals), end='\n\n\n') |
|||
|
|||
# Save yaml |
|||
with open(evolve_yaml, 'w') as f: |
|||
data = pd.read_csv(evolve_csv) |
|||
data = data.rename(columns=lambda x: x.strip()) # strip keys |
|||
i = np.argmax(fitness(data.values[:, :7])) # |
|||
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + |
|||
f'# Best generation: {i}\n' + |
|||
f'# Last generation: {len(data) - 1}\n' + |
|||
'# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' + |
|||
'# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') |
|||
yaml.safe_dump(hyp, f, sort_keys=False) |
|||
|
|||
if bucket: |
|||
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload |
|||
|
|||
|
|||
def apply_classifier(x, model, img, im0): |
|||
# Apply a second stage classifier to YOLO outputs |
|||
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() |
|||
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|||
for i, d in enumerate(x): # per image |
|||
if d is not None and len(d): |
|||
d = d.clone() |
|||
|
|||
# Reshape and pad cutouts |
|||
b = xyxy2xywh(d[:, :4]) # boxes |
|||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square |
|||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad |
|||
d[:, :4] = xywh2xyxy(b).long() |
|||
|
|||
# Rescale boxes from img_size to im0 size |
|||
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) |
|||
|
|||
# Classes |
|||
pred_cls1 = d[:, 5].long() |
|||
ims = [] |
|||
for j, a in enumerate(d): # per item |
|||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|||
im = cv2.resize(cutout, (224, 224)) # BGR |
|||
# cv2.imwrite('example%i.jpg' % j, cutout) |
|||
|
|||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|||
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 |
|||
im /= 255 # 0 - 255 to 0.0 - 1.0 |
|||
ims.append(im) |
|||
|
|||
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction |
|||
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections |
|||
|
|||
return x |
|||
|
|||
|
|||
def increment_path(path, exist_ok=False, sep='', mkdir=False): |
|||
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. |
|||
path = Path(path) # os-agnostic |
|||
if path.exists() and not exist_ok: |
|||
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') |
|||
dirs = glob.glob(f"{path}{sep}*") # similar paths |
|||
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] |
|||
i = [int(m.groups()[0]) for m in matches if m] # indices |
|||
n = max(i) + 1 if i else 2 # increment number |
|||
path = Path(f"{path}{sep}{n}{suffix}") # increment path |
|||
if mkdir: |
|||
path.mkdir(parents=True, exist_ok=True) # make directory |
|||
return path |
|||
|
|||
|
|||
# Variables |
|||
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm |
@ -0,0 +1,133 @@ |
|||
import os |
|||
from typing import Dict |
|||
import numpy as np |
|||
|
|||
# from utils.log import get_logger |
|||
|
|||
|
|||
def write_results(filename, results, data_type): |
|||
if data_type == 'mot': |
|||
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n' |
|||
elif data_type == 'kitti': |
|||
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' |
|||
else: |
|||
raise ValueError(data_type) |
|||
|
|||
with open(filename, 'w') as f: |
|||
for frame_id, tlwhs, track_ids in results: |
|||
if data_type == 'kitti': |
|||
frame_id -= 1 |
|||
for tlwh, track_id in zip(tlwhs, track_ids): |
|||
if track_id < 0: |
|||
continue |
|||
x1, y1, w, h = tlwh |
|||
x2, y2 = x1 + w, y1 + h |
|||
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h) |
|||
f.write(line) |
|||
|
|||
|
|||
# def write_results(filename, results_dict: Dict, data_type: str): |
|||
# if not filename: |
|||
# return |
|||
# path = os.path.dirname(filename) |
|||
# if not os.path.exists(path): |
|||
# os.makedirs(path) |
|||
|
|||
# if data_type in ('mot', 'mcmot', 'lab'): |
|||
# save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n' |
|||
# elif data_type == 'kitti': |
|||
# save_format = '{frame} {id} pedestrian -1 -1 -10 {x1} {y1} {x2} {y2} -1 -1 -1 -1000 -1000 -1000 -10 {score}\n' |
|||
# else: |
|||
# raise ValueError(data_type) |
|||
|
|||
# with open(filename, 'w') as f: |
|||
# for frame_id, frame_data in results_dict.items(): |
|||
# if data_type == 'kitti': |
|||
# frame_id -= 1 |
|||
# for tlwh, track_id in frame_data: |
|||
# if track_id < 0: |
|||
# continue |
|||
# x1, y1, w, h = tlwh |
|||
# x2, y2 = x1 + w, y1 + h |
|||
# line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=1.0) |
|||
# f.write(line) |
|||
# logger.info('Save results to {}'.format(filename)) |
|||
|
|||
|
|||
def read_results(filename, data_type: str, is_gt=False, is_ignore=False): |
|||
if data_type in ('mot', 'lab'): |
|||
read_fun = read_mot_results |
|||
else: |
|||
raise ValueError('Unknown data type: {}'.format(data_type)) |
|||
|
|||
return read_fun(filename, is_gt, is_ignore) |
|||
|
|||
|
|||
""" |
|||
labels={'ped', ... % 1 |
|||
'person_on_vhcl', ... % 2 |
|||
'car', ... % 3 |
|||
'bicycle', ... % 4 |
|||
'mbike', ... % 5 |
|||
'non_mot_vhcl', ... % 6 |
|||
'static_person', ... % 7 |
|||
'distractor', ... % 8 |
|||
'occluder', ... % 9 |
|||
'occluder_on_grnd', ... %10 |
|||
'occluder_full', ... % 11 |
|||
'reflection', ... % 12 |
|||
'crowd' ... % 13 |
|||
}; |
|||
""" |
|||
|
|||
|
|||
def read_mot_results(filename, is_gt, is_ignore): |
|||
valid_labels = {1} |
|||
ignore_labels = {2, 7, 8, 12} |
|||
results_dict = dict() |
|||
if os.path.isfile(filename): |
|||
with open(filename, 'r') as f: |
|||
for line in f.readlines(): |
|||
linelist = line.split(',') |
|||
if len(linelist) < 7: |
|||
continue |
|||
fid = int(linelist[0]) |
|||
if fid < 1: |
|||
continue |
|||
results_dict.setdefault(fid, list()) |
|||
|
|||
if is_gt: |
|||
if 'MOT16-' in filename or 'MOT17-' in filename: |
|||
label = int(float(linelist[7])) |
|||
mark = int(float(linelist[6])) |
|||
if mark == 0 or label not in valid_labels: |
|||
continue |
|||
score = 1 |
|||
elif is_ignore: |
|||
if 'MOT16-' in filename or 'MOT17-' in filename: |
|||
label = int(float(linelist[7])) |
|||
vis_ratio = float(linelist[8]) |
|||
if label not in ignore_labels and vis_ratio >= 0: |
|||
continue |
|||
else: |
|||
continue |
|||
score = 1 |
|||
else: |
|||
score = float(linelist[6]) |
|||
|
|||
tlwh = tuple(map(float, linelist[2:6])) |
|||
target_id = int(linelist[1]) |
|||
|
|||
results_dict[fid].append((tlwh, target_id, score)) |
|||
|
|||
return results_dict |
|||
|
|||
|
|||
def unzip_objs(objs): |
|||
if len(objs) > 0: |
|||
tlwhs, ids, scores = zip(*objs) |
|||
else: |
|||
tlwhs, ids, scores = [], [], [] |
|||
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4) |
|||
|
|||
return tlwhs, ids, scores |
@ -0,0 +1,383 @@ |
|||
""" |
|||
References: |
|||
https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f |
|||
""" |
|||
import json |
|||
from os import makedirs |
|||
from os.path import exists, join |
|||
from datetime import datetime |
|||
|
|||
|
|||
class JsonMeta(object): |
|||
HOURS = 3 |
|||
MINUTES = 59 |
|||
SECONDS = 59 |
|||
PATH_TO_SAVE = 'LOGS' |
|||
DEFAULT_FILE_NAME = 'remaining' |
|||
|
|||
|
|||
class BaseJsonLogger(object): |
|||
""" |
|||
This is the base class that returns __dict__ of its own |
|||
it also returns the dicts of objects in the attributes that are list instances |
|||
|
|||
""" |
|||
|
|||
def dic(self): |
|||
# returns dicts of objects |
|||
out = {} |
|||
for k, v in self.__dict__.items(): |
|||
if hasattr(v, 'dic'): |
|||
out[k] = v.dic() |
|||
elif isinstance(v, list): |
|||
out[k] = self.list(v) |
|||
else: |
|||
out[k] = v |
|||
return out |
|||
|
|||
@staticmethod |
|||
def list(values): |
|||
# applies the dic method on items in the list |
|||
return [v.dic() if hasattr(v, 'dic') else v for v in values] |
|||
|
|||
|
|||
class Label(BaseJsonLogger): |
|||
""" |
|||
For each bounding box there are various categories with confidences. Label class keeps track of that information. |
|||
""" |
|||
|
|||
def __init__(self, category: str, confidence: float): |
|||
self.category = category |
|||
self.confidence = confidence |
|||
|
|||
|
|||
class Bbox(BaseJsonLogger): |
|||
""" |
|||
This module stores the information for each frame and use them in JsonParser |
|||
Attributes: |
|||
labels (list): List of label module. |
|||
top (int): |
|||
left (int): |
|||
width (int): |
|||
height (int): |
|||
|
|||
Args: |
|||
bbox_id (float): |
|||
top (int): |
|||
left (int): |
|||
width (int): |
|||
height (int): |
|||
|
|||
References: |
|||
Check Label module for better understanding. |
|||
|
|||
|
|||
""" |
|||
|
|||
def __init__(self, bbox_id, top, left, width, height): |
|||
self.labels = [] |
|||
self.bbox_id = bbox_id |
|||
self.top = top |
|||
self.left = left |
|||
self.width = width |
|||
self.height = height |
|||
|
|||
def add_label(self, category, confidence): |
|||
# adds category and confidence only if top_k is not exceeded. |
|||
self.labels.append(Label(category, confidence)) |
|||
|
|||
def labels_full(self, value): |
|||
return len(self.labels) == value |
|||
|
|||
|
|||
class Frame(BaseJsonLogger): |
|||
""" |
|||
This module stores the information for each frame and use them in JsonParser |
|||
Attributes: |
|||
timestamp (float): The elapsed time of captured frame |
|||
frame_id (int): The frame number of the captured video |
|||
bboxes (list of Bbox objects): Stores the list of bbox objects. |
|||
|
|||
References: |
|||
Check Bbox class for better information |
|||
|
|||
Args: |
|||
timestamp (float): |
|||
frame_id (int): |
|||
|
|||
""" |
|||
|
|||
def __init__(self, frame_id: int, timestamp: float = None): |
|||
self.frame_id = frame_id |
|||
self.timestamp = timestamp |
|||
self.bboxes = [] |
|||
|
|||
def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int): |
|||
bboxes_ids = [bbox.bbox_id for bbox in self.bboxes] |
|||
if bbox_id not in bboxes_ids: |
|||
self.bboxes.append(Bbox(bbox_id, top, left, width, height)) |
|||
else: |
|||
raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id)) |
|||
|
|||
def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float): |
|||
bboxes = {bbox.id: bbox for bbox in self.bboxes} |
|||
if bbox_id in bboxes.keys(): |
|||
res = bboxes.get(bbox_id) |
|||
res.add_label(category, confidence) |
|||
else: |
|||
raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id)) |
|||
|
|||
|
|||
class BboxToJsonLogger(BaseJsonLogger): |
|||
""" |
|||
ُ This module is designed to automate the task of logging jsons. An example json is used |
|||
to show the contents of json file shortly |
|||
Example: |
|||
{ |
|||
"video_details": { |
|||
"frame_width": 1920, |
|||
"frame_height": 1080, |
|||
"frame_rate": 20, |
|||
"video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi" |
|||
}, |
|||
"frames": [ |
|||
{ |
|||
"frame_id": 329, |
|||
"timestamp": 3365.1254 |
|||
"bboxes": [ |
|||
{ |
|||
"labels": [ |
|||
{ |
|||
"category": "pedestrian", |
|||
"confidence": 0.9 |
|||
} |
|||
], |
|||
"bbox_id": 0, |
|||
"top": 1257, |
|||
"left": 138, |
|||
"width": 68, |
|||
"height": 109 |
|||
} |
|||
] |
|||
}], |
|||
|
|||
Attributes: |
|||
frames (dict): It's a dictionary that maps each frame_id to json attributes. |
|||
video_details (dict): information about video file. |
|||
top_k_labels (int): shows the allowed number of labels |
|||
start_time (datetime object): we use it to automate the json output by time. |
|||
|
|||
Args: |
|||
top_k_labels (int): shows the allowed number of labels |
|||
|
|||
""" |
|||
|
|||
def __init__(self, top_k_labels: int = 1): |
|||
self.frames = {} |
|||
self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None, |
|||
video_name=None) |
|||
self.top_k_labels = top_k_labels |
|||
self.start_time = datetime.now() |
|||
|
|||
def set_top_k(self, value): |
|||
self.top_k_labels = value |
|||
|
|||
def frame_exists(self, frame_id: int) -> bool: |
|||
""" |
|||
Args: |
|||
frame_id (int): |
|||
|
|||
Returns: |
|||
bool: true if frame_id is recognized |
|||
""" |
|||
return frame_id in self.frames.keys() |
|||
|
|||
def add_frame(self, frame_id: int, timestamp: float = None) -> None: |
|||
""" |
|||
Args: |
|||
frame_id (int): |
|||
timestamp (float): opencv captured frame time property |
|||
|
|||
Raises: |
|||
ValueError: if frame_id would not exist in class frames attribute |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
""" |
|||
if not self.frame_exists(frame_id): |
|||
self.frames[frame_id] = Frame(frame_id, timestamp) |
|||
else: |
|||
raise ValueError("Frame id: {} already exists".format(frame_id)) |
|||
|
|||
def bbox_exists(self, frame_id: int, bbox_id: int) -> bool: |
|||
""" |
|||
Args: |
|||
frame_id: |
|||
bbox_id: |
|||
|
|||
Returns: |
|||
bool: if bbox exists in frame bboxes list |
|||
""" |
|||
bboxes = [] |
|||
if self.frame_exists(frame_id=frame_id): |
|||
bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes] |
|||
return bbox_id in bboxes |
|||
|
|||
def find_bbox(self, frame_id: int, bbox_id: int): |
|||
""" |
|||
|
|||
Args: |
|||
frame_id: |
|||
bbox_id: |
|||
|
|||
Returns: |
|||
bbox_id (int): |
|||
|
|||
Raises: |
|||
ValueError: if bbox_id does not exist in the bbox list of specific frame. |
|||
""" |
|||
if not self.bbox_exists(frame_id, bbox_id): |
|||
raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id)) |
|||
bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes} |
|||
return bboxes.get(bbox_id) |
|||
|
|||
def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None: |
|||
""" |
|||
|
|||
Args: |
|||
frame_id (int): |
|||
bbox_id (int): |
|||
top (int): |
|||
left (int): |
|||
width (int): |
|||
height (int): |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
Raises: |
|||
ValueError: if bbox_id already exist in frame information with frame_id |
|||
ValueError: if frame_id does not exist in frames attribute |
|||
""" |
|||
if self.frame_exists(frame_id): |
|||
frame = self.frames[frame_id] |
|||
if not self.bbox_exists(frame_id, bbox_id): |
|||
frame.add_bbox(bbox_id, top, left, width, height) |
|||
else: |
|||
raise ValueError( |
|||
"frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id)) |
|||
else: |
|||
raise ValueError("frame with frame_id: {} does not exist".format(frame_id)) |
|||
|
|||
def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float): |
|||
""" |
|||
Args: |
|||
frame_id: |
|||
bbox_id: |
|||
category: |
|||
confidence: the confidence value returned from yolo detection |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
Raises: |
|||
ValueError: if labels quota (top_k_labels) exceeds. |
|||
""" |
|||
bbox = self.find_bbox(frame_id, bbox_id) |
|||
if not bbox.labels_full(self.top_k_labels): |
|||
bbox.add_label(category, confidence) |
|||
else: |
|||
raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id)) |
|||
|
|||
def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None, |
|||
video_name: str = None): |
|||
self.video_details['frame_width'] = frame_width |
|||
self.video_details['frame_height'] = frame_height |
|||
self.video_details['frame_rate'] = frame_rate |
|||
self.video_details['video_name'] = video_name |
|||
|
|||
def output(self): |
|||
output = {'video_details': self.video_details} |
|||
result = list(self.frames.values()) |
|||
output['frames'] = [item.dic() for item in result] |
|||
return output |
|||
|
|||
def json_output(self, output_name): |
|||
""" |
|||
Args: |
|||
output_name: |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
Notes: |
|||
It creates the json output with `output_name` name. |
|||
""" |
|||
if not output_name.endswith('.json'): |
|||
output_name += '.json' |
|||
with open(output_name, 'w') as file: |
|||
json.dump(self.output(), file) |
|||
file.close() |
|||
|
|||
def set_start(self): |
|||
self.start_time = datetime.now() |
|||
|
|||
def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0, |
|||
seconds: int = 60) -> None: |
|||
""" |
|||
Notes: |
|||
Creates folder and then periodically stores the jsons on that address. |
|||
|
|||
Args: |
|||
output_dir (str): the directory where output files will be stored |
|||
hours (int): |
|||
minutes (int): |
|||
seconds (int): |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
""" |
|||
end = datetime.now() |
|||
interval = 0 |
|||
interval += abs(min([hours, JsonMeta.HOURS]) * 3600) |
|||
interval += abs(min([minutes, JsonMeta.MINUTES]) * 60) |
|||
interval += abs(min([seconds, JsonMeta.SECONDS])) |
|||
diff = (end - self.start_time).seconds |
|||
|
|||
if diff > interval: |
|||
output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json' |
|||
if not exists(output_dir): |
|||
makedirs(output_dir) |
|||
output = join(output_dir, output_name) |
|||
self.json_output(output_name=output) |
|||
self.frames = {} |
|||
self.start_time = datetime.now() |
|||
|
|||
def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE): |
|||
""" |
|||
saves as the number of frames quota increases higher. |
|||
:param frames_quota: |
|||
:param frame_counter: |
|||
:param output_dir: |
|||
:return: |
|||
""" |
|||
pass |
|||
|
|||
def flush(self, output_dir): |
|||
""" |
|||
Notes: |
|||
We use this function to output jsons whenever possible. |
|||
like the time that we exit the while loop of opencv. |
|||
|
|||
Args: |
|||
output_dir: |
|||
|
|||
Returns: |
|||
None |
|||
|
|||
""" |
|||
filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json' |
|||
output = join(output_dir, filename) |
|||
self.json_output(output_name=output) |
@ -0,0 +1,17 @@ |
|||
import logging |
|||
|
|||
|
|||
def get_logger(name='root'): |
|||
formatter = logging.Formatter( |
|||
# fmt='%(asctime)s [%(levelname)s]: %(filename)s(%(funcName)s:%(lineno)s) >> %(message)s') |
|||
fmt='%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') |
|||
|
|||
handler = logging.StreamHandler() |
|||
handler.setFormatter(formatter) |
|||
|
|||
logger = logging.getLogger(name) |
|||
logger.setLevel(logging.INFO) |
|||
logger.addHandler(handler) |
|||
return logger |
|||
|
|||
|
@ -0,0 +1,41 @@ |
|||
import os |
|||
import yaml |
|||
from easydict import EasyDict as edict |
|||
|
|||
|
|||
class YamlParser(edict): |
|||
""" |
|||
This is yaml parser based on EasyDict. |
|||
""" |
|||
|
|||
def __init__(self, cfg_dict=None, config_file=None): |
|||
if cfg_dict is None: |
|||
cfg_dict = {} |
|||
|
|||
if config_file is not None: |
|||
assert(os.path.isfile(config_file)) |
|||
with open(config_file, 'r') as fo: |
|||
yaml_ = yaml.load(fo.read(), Loader=yaml.FullLoader) |
|||
cfg_dict.update(yaml_) |
|||
|
|||
super(YamlParser, self).__init__(cfg_dict) |
|||
|
|||
def merge_from_file(self, config_file): |
|||
with open(config_file, 'r') as fo: |
|||
yaml_ = yaml.load(fo.read(), Loader=yaml.FullLoader) |
|||
self.update(yaml_) |
|||
|
|||
def merge_from_dict(self, config_dict): |
|||
self.update(config_dict) |
|||
|
|||
|
|||
def get_config(config_file=None): |
|||
return YamlParser(config_file=config_file) |
|||
|
|||
|
|||
if __name__ == "__main__": |
|||
cfg = YamlParser(config_file="../configs/yolov3.yaml") |
|||
cfg.merge_from_file("../configs/deep_sort.yaml") |
|||
|
|||
import ipdb |
|||
ipdb.set_trace() |
@ -0,0 +1,470 @@ |
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|||
""" |
|||
Plotting utils |
|||
""" |
|||
|
|||
import math |
|||
import os |
|||
from copy import copy |
|||
from pathlib import Path |
|||
|
|||
import cv2 |
|||
import matplotlib |
|||
import matplotlib.pyplot as plt |
|||
import numpy as np |
|||
import pandas as pd |
|||
import seaborn as sn |
|||
import torch |
|||
from PIL import Image, ImageDraw, ImageFont |
|||
|
|||
from utils.general import (LOGGER, Timeout, check_requirements, clip_coords, increment_path, is_ascii, is_chinese, |
|||
try_except, user_config_dir, xywh2xyxy, xyxy2xywh) |
|||
from utils.metrics import fitness |
|||
|
|||
# Settings |
|||
CONFIG_DIR = user_config_dir() # Ultralytics settings dir |
|||
RANK = int(os.getenv('RANK', -1)) |
|||
matplotlib.rc('font', **{'size': 11}) |
|||
matplotlib.use('Agg') # for writing to files only |
|||
|
|||
|
|||
class Colors: |
|||
# Ultralytics color palette https://ultralytics.com/ |
|||
def __init__(self): |
|||
# hex = matplotlib.colors.TABLEAU_COLORS.values() |
|||
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', |
|||
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') |
|||
self.palette = [self.hex2rgb('#' + c) for c in hex] |
|||
self.n = len(self.palette) |
|||
|
|||
def __call__(self, i, bgr=False): |
|||
c = self.palette[int(i) % self.n] |
|||
return (c[2], c[1], c[0]) if bgr else c |
|||
|
|||
@staticmethod |
|||
def hex2rgb(h): # rgb order (PIL) |
|||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|||
|
|||
|
|||
colors = Colors() # create instance for 'from utils.plots import colors' |
|||
|
|||
|
|||
def check_font(font='Arial.ttf', size=10): |
|||
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary |
|||
font = Path(font) |
|||
font = font if font.exists() else (CONFIG_DIR / font.name) |
|||
try: |
|||
return ImageFont.truetype(str(font) if font.exists() else font.name, size) |
|||
except Exception as e: # download if missing |
|||
url = "https://ultralytics.com/assets/" + font.name |
|||
print(f'Downloading {url} to {font}...') |
|||
torch.hub.download_url_to_file(url, str(font), progress=False) |
|||
try: |
|||
return ImageFont.truetype(str(font), size) |
|||
except TypeError: |
|||
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 |
|||
|
|||
|
|||
class Annotator: |
|||
if RANK in (-1, 0): |
|||
check_font() # download TTF if necessary |
|||
|
|||
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations |
|||
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): |
|||
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' |
|||
self.pil = pil or not is_ascii(example) or is_chinese(example) |
|||
if self.pil: # use PIL |
|||
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) |
|||
self.draw = ImageDraw.Draw(self.im) |
|||
self.font = check_font(font='Arial.Unicode.ttf' if is_chinese(example) else font, |
|||
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) |
|||
else: # use cv2 |
|||
self.im = im |
|||
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width |
|||
|
|||
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): |
|||
# Add one xyxy box to image with label |
|||
if self.pil or not is_ascii(label): |
|||
self.draw.rectangle(box, width=self.lw, outline=color) # box |
|||
if label: |
|||
w, h = self.font.getsize(label) # text width, height |
|||
outside = box[1] - h >= 0 # label fits outside box |
|||
self.draw.rectangle([box[0], |
|||
box[1] - h if outside else box[1], |
|||
box[0] + w + 1, |
|||
box[1] + 1 if outside else box[1] + h + 1], fill=color) |
|||
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 |
|||
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) |
|||
else: # cv2 |
|||
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) |
|||
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) |
|||
if label: |
|||
tf = max(self.lw - 1, 1) # font thickness |
|||
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height |
|||
outside = p1[1] - h - 3 >= 0 # label fits outside box |
|||
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 |
|||
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled |
|||
cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color, |
|||
thickness=tf, lineType=cv2.LINE_AA) |
|||
|
|||
def rectangle(self, xy, fill=None, outline=None, width=1): |
|||
# Add rectangle to image (PIL-only) |
|||
self.draw.rectangle(xy, fill, outline, width) |
|||
|
|||
def text(self, xy, text, txt_color=(255, 255, 255)): |
|||
# Add text to image (PIL-only) |
|||
w, h = self.font.getsize(text) # text width, height |
|||
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font) |
|||
|
|||
def result(self): |
|||
# Return annotated image as array |
|||
return np.asarray(self.im) |
|||
|
|||
|
|||
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): |
|||
""" |
|||
x: Features to be visualized |
|||
module_type: Module type |
|||
stage: Module stage within model |
|||
n: Maximum number of feature maps to plot |
|||
save_dir: Directory to save results |
|||
""" |
|||
if 'Detect' not in module_type: |
|||
batch, channels, height, width = x.shape # batch, channels, height, width |
|||
if height > 1 and width > 1: |
|||
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename |
|||
|
|||
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels |
|||
n = min(n, channels) # number of plots |
|||
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols |
|||
ax = ax.ravel() |
|||
plt.subplots_adjust(wspace=0.05, hspace=0.05) |
|||
for i in range(n): |
|||
ax[i].imshow(blocks[i].squeeze()) # cmap='gray' |
|||
ax[i].axis('off') |
|||
|
|||
print(f'Saving {f}... ({n}/{channels})') |
|||
plt.savefig(f, dpi=300, bbox_inches='tight') |
|||
plt.close() |
|||
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save |
|||
|
|||
|
|||
def hist2d(x, y, n=100): |
|||
# 2d histogram used in labels.png and evolve.png |
|||
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
|||
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
|||
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
|||
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
|||
return np.log(hist[xidx, yidx]) |
|||
|
|||
|
|||
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
|||
from scipy.signal import butter, filtfilt |
|||
|
|||
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy |
|||
def butter_lowpass(cutoff, fs, order): |
|||
nyq = 0.5 * fs |
|||
normal_cutoff = cutoff / nyq |
|||
return butter(order, normal_cutoff, btype='low', analog=False) |
|||
|
|||
b, a = butter_lowpass(cutoff, fs, order=order) |
|||
return filtfilt(b, a, data) # forward-backward filter |
|||
|
|||
|
|||
def output_to_target(output): |
|||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] |
|||
targets = [] |
|||
for i, o in enumerate(output): |
|||
for *box, conf, cls in o.cpu().numpy(): |
|||
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) |
|||
return np.array(targets) |
|||
|
|||
|
|||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16): |
|||
# Plot image grid with labels |
|||
if isinstance(images, torch.Tensor): |
|||
images = images.cpu().float().numpy() |
|||
if isinstance(targets, torch.Tensor): |
|||
targets = targets.cpu().numpy() |
|||
if np.max(images[0]) <= 1: |
|||
images *= 255 # de-normalise (optional) |
|||
bs, _, h, w = images.shape # batch size, _, height, width |
|||
bs = min(bs, max_subplots) # limit plot images |
|||
ns = np.ceil(bs ** 0.5) # number of subplots (square) |
|||
|
|||
# Build Image |
|||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init |
|||
for i, im in enumerate(images): |
|||
if i == max_subplots: # if last batch has fewer images than we expect |
|||
break |
|||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin |
|||
im = im.transpose(1, 2, 0) |
|||
mosaic[y:y + h, x:x + w, :] = im |
|||
|
|||
# Resize (optional) |
|||
scale = max_size / ns / max(h, w) |
|||
if scale < 1: |
|||
h = math.ceil(scale * h) |
|||
w = math.ceil(scale * w) |
|||
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|||
|
|||
# Annotate |
|||
fs = int((h + w) * ns * 0.01) # font size |
|||
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True) |
|||
for i in range(i + 1): |
|||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin |
|||
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders |
|||
if paths: |
|||
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames |
|||
if len(targets) > 0: |
|||
ti = targets[targets[:, 0] == i] # image targets |
|||
boxes = xywh2xyxy(ti[:, 2:6]).T |
|||
classes = ti[:, 1].astype('int') |
|||
labels = ti.shape[1] == 6 # labels if no conf column |
|||
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) |
|||
|
|||
if boxes.shape[1]: |
|||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 |
|||
boxes[[0, 2]] *= w # scale to pixels |
|||
boxes[[1, 3]] *= h |
|||
elif scale < 1: # absolute coords need scale if image scales |
|||
boxes *= scale |
|||
boxes[[0, 2]] += x |
|||
boxes[[1, 3]] += y |
|||
for j, box in enumerate(boxes.T.tolist()): |
|||
cls = classes[j] |
|||
color = colors(cls) |
|||
cls = names[cls] if names else cls |
|||
if labels or conf[j] > 0.25: # 0.25 conf thresh |
|||
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' |
|||
annotator.box_label(box, label, color=color) |
|||
annotator.im.save(fname) # save |
|||
|
|||
|
|||
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): |
|||
# Plot LR simulating training for full epochs |
|||
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals |
|||
y = [] |
|||
for _ in range(epochs): |
|||
scheduler.step() |
|||
y.append(optimizer.param_groups[0]['lr']) |
|||
plt.plot(y, '.-', label='LR') |
|||
plt.xlabel('epoch') |
|||
plt.ylabel('LR') |
|||
plt.grid() |
|||
plt.xlim(0, epochs) |
|||
plt.ylim(0) |
|||
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) |
|||
plt.close() |
|||
|
|||
|
|||
def plot_val_txt(): # from utils.plots import *; plot_val() |
|||
# Plot val.txt histograms |
|||
x = np.loadtxt('val.txt', dtype=np.float32) |
|||
box = xyxy2xywh(x[:, :4]) |
|||
cx, cy = box[:, 0], box[:, 1] |
|||
|
|||
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) |
|||
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) |
|||
ax.set_aspect('equal') |
|||
plt.savefig('hist2d.png', dpi=300) |
|||
|
|||
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) |
|||
ax[0].hist(cx, bins=600) |
|||
ax[1].hist(cy, bins=600) |
|||
plt.savefig('hist1d.png', dpi=200) |
|||
|
|||
|
|||
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() |
|||
# Plot targets.txt histograms |
|||
x = np.loadtxt('targets.txt', dtype=np.float32).T |
|||
s = ['x targets', 'y targets', 'width targets', 'height targets'] |
|||
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) |
|||
ax = ax.ravel() |
|||
for i in range(4): |
|||
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') |
|||
ax[i].legend() |
|||
ax[i].set_title(s[i]) |
|||
plt.savefig('targets.jpg', dpi=200) |
|||
|
|||
|
|||
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study() |
|||
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir) |
|||
save_dir = Path(file).parent if file else Path(dir) |
|||
plot2 = False # plot additional results |
|||
if plot2: |
|||
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() |
|||
|
|||
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) |
|||
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: |
|||
for f in sorted(save_dir.glob('study*.txt')): |
|||
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T |
|||
x = np.arange(y.shape[1]) if x is None else np.array(x) |
|||
if plot2: |
|||
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] |
|||
for i in range(7): |
|||
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) |
|||
ax[i].set_title(s[i]) |
|||
|
|||
j = y[3].argmax() + 1 |
|||
ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, |
|||
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) |
|||
|
|||
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], |
|||
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') |
|||
|
|||
ax2.grid(alpha=0.2) |
|||
ax2.set_yticks(np.arange(20, 60, 5)) |
|||
ax2.set_xlim(0, 57) |
|||
ax2.set_ylim(25, 55) |
|||
ax2.set_xlabel('GPU Speed (ms/img)') |
|||
ax2.set_ylabel('COCO AP val') |
|||
ax2.legend(loc='lower right') |
|||
f = save_dir / 'study.png' |
|||
print(f'Saving {f}...') |
|||
plt.savefig(f, dpi=300) |
|||
|
|||
|
|||
@try_except # known issue https://github.com/ultralytics/yolov5/issues/5395 |
|||
@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611 |
|||
def plot_labels(labels, names=(), save_dir=Path('')): |
|||
# plot dataset labels |
|||
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") |
|||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes |
|||
nc = int(c.max() + 1) # number of classes |
|||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) |
|||
|
|||
# seaborn correlogram |
|||
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) |
|||
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) |
|||
plt.close() |
|||
|
|||
# matplotlib labels |
|||
matplotlib.use('svg') # faster |
|||
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() |
|||
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) |
|||
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195 |
|||
ax[0].set_ylabel('instances') |
|||
if 0 < len(names) < 30: |
|||
ax[0].set_xticks(range(len(names))) |
|||
ax[0].set_xticklabels(names, rotation=90, fontsize=10) |
|||
else: |
|||
ax[0].set_xlabel('classes') |
|||
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) |
|||
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) |
|||
|
|||
# rectangles |
|||
labels[:, 1:3] = 0.5 # center |
|||
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 |
|||
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) |
|||
for cls, *box in labels[:1000]: |
|||
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot |
|||
ax[1].imshow(img) |
|||
ax[1].axis('off') |
|||
|
|||
for a in [0, 1, 2, 3]: |
|||
for s in ['top', 'right', 'left', 'bottom']: |
|||
ax[a].spines[s].set_visible(False) |
|||
|
|||
plt.savefig(save_dir / 'labels.jpg', dpi=200) |
|||
matplotlib.use('Agg') |
|||
plt.close() |
|||
|
|||
|
|||
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve() |
|||
# Plot evolve.csv hyp evolution results |
|||
evolve_csv = Path(evolve_csv) |
|||
data = pd.read_csv(evolve_csv) |
|||
keys = [x.strip() for x in data.columns] |
|||
x = data.values |
|||
f = fitness(x) |
|||
j = np.argmax(f) # max fitness index |
|||
plt.figure(figsize=(10, 12), tight_layout=True) |
|||
matplotlib.rc('font', **{'size': 8}) |
|||
for i, k in enumerate(keys[7:]): |
|||
v = x[:, 7 + i] |
|||
mu = v[j] # best single result |
|||
plt.subplot(6, 5, i + 1) |
|||
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') |
|||
plt.plot(mu, f.max(), 'k+', markersize=15) |
|||
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters |
|||
if i % 5 != 0: |
|||
plt.yticks([]) |
|||
print(f'{k:>15}: {mu:.3g}') |
|||
f = evolve_csv.with_suffix('.png') # filename |
|||
plt.savefig(f, dpi=200) |
|||
plt.close() |
|||
print(f'Saved {f}') |
|||
|
|||
|
|||
def plot_results(file='path/to/results.csv', dir=''): |
|||
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') |
|||
save_dir = Path(file).parent if file else Path(dir) |
|||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) |
|||
ax = ax.ravel() |
|||
files = list(save_dir.glob('results*.csv')) |
|||
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' |
|||
for fi, f in enumerate(files): |
|||
try: |
|||
data = pd.read_csv(f) |
|||
s = [x.strip() for x in data.columns] |
|||
x = data.values[:, 0] |
|||
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): |
|||
y = data.values[:, j] |
|||
# y[y == 0] = np.nan # don't show zero values |
|||
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) |
|||
ax[i].set_title(s[j], fontsize=12) |
|||
# if j in [8, 9, 10]: # share train and val loss y axes |
|||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) |
|||
except Exception as e: |
|||
print(f'Warning: Plotting error for {f}: {e}') |
|||
ax[1].legend() |
|||
fig.savefig(save_dir / 'results.png', dpi=200) |
|||
plt.close() |
|||
|
|||
|
|||
def profile_idetection(start=0, stop=0, labels=(), save_dir=''): |
|||
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() |
|||
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() |
|||
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] |
|||
files = list(Path(save_dir).glob('frames*.txt')) |
|||
for fi, f in enumerate(files): |
|||
try: |
|||
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows |
|||
n = results.shape[1] # number of rows |
|||
x = np.arange(start, min(stop, n) if stop else n) |
|||
results = results[:, x] |
|||
t = (results[0] - results[0].min()) # set t0=0s |
|||
results[0] = x |
|||
for i, a in enumerate(ax): |
|||
if i < len(results): |
|||
label = labels[fi] if len(labels) else f.stem.replace('frames_', '') |
|||
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) |
|||
a.set_title(s[i]) |
|||
a.set_xlabel('time (s)') |
|||
# if fi == len(files) - 1: |
|||
# a.set_ylim(bottom=0) |
|||
for side in ['top', 'right']: |
|||
a.spines[side].set_visible(False) |
|||
else: |
|||
a.remove() |
|||
except Exception as e: |
|||
print(f'Warning: Plotting error for {f}; {e}') |
|||
ax[1].legend() |
|||
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) |
|||
|
|||
|
|||
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True): |
|||
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop |
|||
xyxy = torch.tensor(xyxy).view(-1, 4) |
|||
b = xyxy2xywh(xyxy) # boxes |
|||
if square: |
|||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square |
|||
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad |
|||
xyxy = xywh2xyxy(b).long() |
|||
clip_coords(xyxy, im.shape) |
|||
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] |
|||
if save: |
|||
file.parent.mkdir(parents=True, exist_ok=True) # make directory |
|||
cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop) |
|||
return crop |
@ -0,0 +1,39 @@ |
|||
from functools import wraps |
|||
from time import time |
|||
|
|||
|
|||
def is_video(ext: str): |
|||
""" |
|||
Returns true if ext exists in |
|||
allowed_exts for video files. |
|||
|
|||
Args: |
|||
ext: |
|||
|
|||
Returns: |
|||
|
|||
""" |
|||
|
|||
allowed_exts = ('.mp4', '.webm', '.ogg', '.avi', '.wmv', '.mkv', '.3gp') |
|||
return any((ext.endswith(x) for x in allowed_exts)) |
|||
|
|||
|
|||
def tik_tok(func): |
|||
""" |
|||
keep track of time for each process. |
|||
Args: |
|||
func: |
|||
|
|||
Returns: |
|||
|
|||
""" |
|||
@wraps(func) |
|||
def _time_it(*args, **kwargs): |
|||
start = time() |
|||
try: |
|||
return func(*args, **kwargs) |
|||
finally: |
|||
end_ = time() |
|||
print("time: {:.03f}s, fps: {:.03f}".format(end_ - start, 1 / (end_ - start))) |
|||
|
|||
return _time_it |
@ -0,0 +1,79 @@ |
|||
import torch |
|||
import numpy as np |
|||
|
|||
from yolov5.models.experimental import attempt_load |
|||
from yolov5.utils.datasets import letterbox |
|||
from yolov5.utils.general import non_max_suppression, scale_coords |
|||
from yolov5.utils.torch_utils import select_device |
|||
|
|||
|
|||
class Detector: |
|||
|
|||
def __init__(self, img_size, view_img_size,weights): |
|||
self.img_size = img_size |
|||
self.view_img_size=view_img_size |
|||
self.threshold = 0.3 |
|||
self.stride = 1 |
|||
|
|||
self.weights =weights |
|||
|
|||
self.device = '0' if torch.cuda.is_available() else 'cpu' |
|||
self.device = select_device(self.device) |
|||
|
|||
|
|||
half = self.device != 'cpu' # half precision only supported on CUDA |
|||
|
|||
# Load model |
|||
model = torch.load(self.weights, map_location=self.device)[ |
|||
'model'].float() # load to FP32 |
|||
model.to(self.device).eval() |
|||
if half: |
|||
model.half() # to FP16 |
|||
|
|||
self.m = model |
|||
self.names = model.module.names if hasattr( |
|||
model, 'module') else model.names |
|||
|
|||
def preprocess(self, img): |
|||
|
|||
# img0 = img.copy() |
|||
img = letterbox(img, new_shape=self.img_size)[0] |
|||
img = img[:, :, ::-1].transpose(2, 0, 1) |
|||
img = np.ascontiguousarray(img) |
|||
img = torch.from_numpy(img).to(self.device) |
|||
img = img.half() |
|||
img /= 255.0 |
|||
if img.ndimension() == 3: |
|||
img = img.unsqueeze(0) |
|||
|
|||
return img |
|||
|
|||
def detect(self, im): |
|||
|
|||
img = self.preprocess(im) |
|||
|
|||
pred = self.m(img, augment=False)[0] |
|||
# pred = pred.float() |
|||
# pred = non_max_suppression(pred, self.threshold, 0.4) |
|||
return img,pred |
|||
# boxes = [] |
|||
# for det in pred: |
|||
|
|||
# if det is not None and len(det): |
|||
# det[:, :4] = scale_coords( |
|||
# img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# for *x, conf, cls_id in det: |
|||
# lbl = self.names[int(cls_id)] |
|||
# print(lbl,':'+str(conf)) |
|||
# if float(conf)<0.5: |
|||
# continue |
|||
# if lbl not in ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck','dog']: |
|||
# continue |
|||
# pass |
|||
# x1, y1 = int(x[0]), int(x[1]) |
|||
# x2, y2 = int(x[2]), int(x[3]) |
|||
# boxes.append( |
|||
# (x1, y1, x2, y2, cls_id, conf,lbl)) |
|||
|
|||
# return boxes |
@ -0,0 +1,279 @@ |
|||
import cv2 |
|||
import numpy as np |
|||
from numpy.core.fromnumeric import size |
|||
import ec.warningunit |
|||
# 设置窗体大小 |
|||
img_size=(1920,1080) |
|||
# class names |
|||
clsnames= [ '行 人', '自行车', '小汽车', '摩托车', 'airplane', '巴 士', 'train', '卡 车', 'boat', 'traffic light', |
|||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', '狗', 'horse', 'sheep', 'cow', |
|||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', |
|||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', |
|||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', |
|||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', |
|||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', |
|||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', |
|||
'hair drier', 'toothbrush' ] |
|||
# class names |
|||
# names= [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', |
|||
# 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', |
|||
# 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', |
|||
# 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', |
|||
# 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', |
|||
# 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', |
|||
# 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', |
|||
# 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', |
|||
# 'hair drier', 'toothbrush' ] |
|||
# 根据视频尺寸,填充一个polygon,供撞线计算使用 |
|||
mask_image_temp = np.zeros((1080, 1920), dtype=np.uint8) |
|||
|
|||
# 初始化2个撞线polygon |
|||
# list_pts_blue = [[204, 305], [227, 431], [605, 522], [1101, 464], [1910, 491], [1910, 400], [1125, 379], [604, 437], |
|||
# [299, 375], [267, 289]] |
|||
top=300 |
|||
height =50 |
|||
# # 测试 |
|||
list_pts_blue = [[10, 300], [560, 350], [1200, 400], [1910, 350], |
|||
[1918, 500], [1250, 550], [580, 500], [10, 450]] |
|||
|
|||
# #横琴大桥 |
|||
# list_pts_blue = [ [850,850], [1240, 510], |
|||
# [1370, 580], [950, 950]] |
|||
#横琴新家园 |
|||
# list_pts_blue = [ [100,600], [1400, 600], |
|||
# [1500, 700], [200, 700]] |
|||
ndarray_pts_blue = np.array(list_pts_blue, np.int32) |
|||
ndarray_pts_blue =ndarray_pts_blue+np.array([0,-260])# |
|||
polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1) |
|||
polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis] |
|||
|
|||
# 填充第二个polygon |
|||
mask_image_temp = np.zeros((1080, 1920), dtype=np.uint8) |
|||
# list_pts_yellow =list_pts_blue +[[0,30]] |
|||
ndarray_pts_yellow =ndarray_pts_blue+np.array([0,160])# np.array(list_pts_yellow, np.int32) |
|||
# ndarray_pts_yellow =ndarray_pts_blue+np.array([130,80])# np.array(list_pts_yellow, np.int32) |
|||
# ndarray_pts_yellow =ndarray_pts_blue+np.array([100,100])# np.array(list_pts_yellow, np.int32) |
|||
polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2) |
|||
polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis] |
|||
|
|||
# 撞线检测用mask,包含2个polygon,(值范围 0、1、2),供撞线计算使用 |
|||
polygon_mask_blue_and_yellow = polygon_blue_value_1 + polygon_yellow_value_2 |
|||
|
|||
# 缩小尺寸,1920x1080->960x540 |
|||
polygon_mask_blue_and_yellow = cv2.resize(polygon_mask_blue_and_yellow, img_size) |
|||
|
|||
# 蓝 色盘 b,g,r |
|||
blue_color_plate = [255, 0, 0] |
|||
# 蓝 polygon图片 |
|||
blue_image = np.array(polygon_blue_value_1 * blue_color_plate, np.uint8) |
|||
|
|||
# 黄 色盘 |
|||
yellow_color_plate = [0, 255, 255] |
|||
# 黄 polygon图片 |
|||
yellow_image = np.array(polygon_yellow_value_2 * yellow_color_plate, np.uint8) |
|||
|
|||
# 彩色图片(值范围 0-255) |
|||
color_polygons_image = blue_image + yellow_image |
|||
# 缩小尺寸,1920x1080->960x540 |
|||
color_polygons_image = cv2.resize(color_polygons_image,img_size) |
|||
|
|||
# list 与蓝色polygon重叠 |
|||
list_overlapping_blue_polygon = [] |
|||
|
|||
# list 与黄色polygon重叠 |
|||
list_overlapping_yellow_polygon = [] |
|||
countlist=[] |
|||
|
|||
|
|||
|
|||
def addcountup( cls_id): |
|||
|
|||
for modex in countlist: |
|||
if modex["key"]==cls_id: |
|||
modex["up"]+=1 |
|||
return modex |
|||
modex ={} |
|||
modex["key"]=cls_id |
|||
modex["up"]=1 |
|||
modex["down"]=0 |
|||
countlist.append(modex) |
|||
|
|||
return modex |
|||
def addcountdown(cls_id): |
|||
|
|||
for modex in countlist: |
|||
if modex["key"]==cls_id: |
|||
modex["down"]+=1 |
|||
return modex |
|||
modex ={} |
|||
modex["key"]=cls_id |
|||
modex["up"]=0 |
|||
modex["down"]=1 |
|||
countlist.append(modex) |
|||
return modex |
|||
font_draw_number =cv2.FONT_HERSHEY_SIMPLEX#FONT_HERSHEY_SIMPLEX |
|||
|
|||
# def drawcounttext(output_image_frame): |
|||
# blk = np.zeros(output_image_frame.shape, np.uint8) |
|||
|
|||
# cv2.rectangle(blk,(0, 0), (250, 100), (255, 255, 255), -1) # 注意在 blk的基础上进行绘制; |
|||
# # output_image_frame = cv2.addWeighted(output_image_frame, 1.0, blk, 0.5, 1) |
|||
# alpha = 1 |
|||
# # beta 为第二张图片的透明度 |
|||
# beta = 0.5 |
|||
# gamma = 0 |
|||
# # cv2.addWeighted 将原始图片与 mask 融合 |
|||
# output_image_frame = cv2.addWeighted(output_image_frame, alpha, blk, beta, gamma) |
|||
|
|||
# row =0 |
|||
# for modex in countlist: |
|||
# draw_text_postion = (10, int(20+row*25)) |
|||
# # text_draw =tracker.names[modex["key"]]+" in:"+str(modex["up"])+": out:"+str(modex["down"]) |
|||
# # cv2.putText(img=output_image_frame, text=text_draw, |
|||
# # org=draw_text_postion, |
|||
# # fontFace=font_draw_number, |
|||
# # fontScale=0.8, color=(9,10, 240), thickness=2) |
|||
# row+=1 |
|||
|
|||
# return output_image_frame |
|||
# 添加抬头半透明框 |
|||
def addtitlerectangle(im0): |
|||
# im0= cv2.resize(im0,(1920,1080)) |
|||
blk = np.zeros(im0.shape, np.uint8) |
|||
|
|||
cv2.rectangle(blk,(0, 0), (400, 200), (255, 255, 255), -1) # 注意在 blk的基础上进行绘制; |
|||
# output_image_frame = cv2.addWeighted(output_image_frame, 1.0, blk, 0.5, 1) |
|||
alpha = 1 |
|||
# beta 为第二张图片的透明度 |
|||
beta = 0.5 |
|||
gamma = 0 |
|||
# cv2.addWeighted 将原始图片与 mask 融合 |
|||
im0 = cv2.addWeighted(im0, alpha, blk, beta, gamma) |
|||
return im0 |
|||
|
|||
# def addcolorimg(im0): |
|||
# # im0= cv2.resize(im0,(1920,1080)) |
|||
# im0 = cv2.add(im0, color_polygons_image) |
|||
# return im0 |
|||
|
|||
def addcolorimg(im0): |
|||
alpha = 1 |
|||
# beta 为第二张图片的透明度 |
|||
beta = 0.5 |
|||
gamma = 0 |
|||
# cv2.addWeighted 将原始图片与 mask 融合 |
|||
im0 = cv2.addWeighted(im0, alpha, color_polygons_image, beta, gamma) |
|||
|
|||
return im0 |
|||
|
|||
def addcount(list_bboxs,img): |
|||
if len(list_bboxs) == 0: |
|||
# 如果图像中没有任何的bbox,则清空list |
|||
list_overlapping_blue_polygon.clear() |
|||
list_overlapping_yellow_polygon.clear() |
|||
return |
|||
# ----------------------判断撞线---------------------- |
|||
for item_bbox in list_bboxs: |
|||
x1, y1, x2, y2, track_id,cls_id= item_bbox |
|||
|
|||
|
|||
# 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0 |
|||
y1_offset = int(y1 + ((y2 - y1) * 0.6)) |
|||
|
|||
# 撞线的点 |
|||
y = y1_offset |
|||
x = int((x1+x2)*0.5) |
|||
|
|||
if polygon_mask_blue_and_yellow[y, x] == 1: |
|||
# 如果撞 蓝polygon |
|||
if track_id not in list_overlapping_blue_polygon: |
|||
list_overlapping_blue_polygon.append(track_id) |
|||
print('\033[34m') |
|||
print("蓝色列表=",list_overlapping_blue_polygon) |
|||
print(f'进入蓝色区域cls_id ={cls_id} track_id=' +str(track_id) ) |
|||
pass |
|||
|
|||
# 判断 黄polygon list 里是否有此 track_id |
|||
# 有此 track_id,则 认为是 外出方向 |
|||
if track_id in list_overlapping_yellow_polygon: |
|||
# 外出+1 |
|||
# up_count += 1 |
|||
countmodel= addcountup(cls_id) |
|||
label=clsnames[cls_id] |
|||
print(f'类别: {label} | id: {track_id} | 上行撞线 | 上行撞线总数: {countmodel["up"]} | 上行id列表: {list_overlapping_yellow_polygon}') |
|||
# 删除 黄polygon list 中的此id |
|||
list_overlapping_yellow_polygon.remove(track_id) |
|||
ec.warningunit.filter(item_bbox,list_bboxs,1,img.shape) |
|||
filename=f'out/up_{cls_id}_{track_id}.jpg' |
|||
cv2.imwrite(filename,img) |
|||
|
|||
pass |
|||
else: |
|||
# 无此 track_id,不做其他操作 |
|||
pass |
|||
|
|||
elif polygon_mask_blue_and_yellow[y, x] == 2: |
|||
# 如果撞 黄polygon |
|||
if track_id not in list_overlapping_yellow_polygon: |
|||
list_overlapping_yellow_polygon.append(track_id) |
|||
print('\033[33m') |
|||
print("黄色列表=",list_overlapping_yellow_polygon) |
|||
print(f'进入黄色区域 cls_id ={cls_id} track_id=' +str(track_id) ) |
|||
pass |
|||
|
|||
# 判断 蓝polygon list 里是否有此 track_id |
|||
# 有此 track_id,则 认为是 进入方向 |
|||
if track_id in list_overlapping_blue_polygon: |
|||
# 进入+1 |
|||
# down_count += 1 |
|||
countmodel= addcountdown(cls_id) |
|||
label=clsnames[cls_id] |
|||
print(f'类别: {label} | id: {track_id} | 下行撞线 | 下行撞线总数: {countmodel["down"]} | 下行id列表: {list_overlapping_blue_polygon}') |
|||
|
|||
# 删除 蓝polygon list 中的此id |
|||
list_overlapping_blue_polygon.remove(track_id) |
|||
ec.warningunit.filter(item_bbox,list_bboxs,2,img.shape) |
|||
filename=f'out/down_{cls_id}_{track_id}.jpg' |
|||
cv2.imwrite(filename,img) |
|||
pass |
|||
else: |
|||
# 无此 track_id,不做其他操作 |
|||
pass |
|||
pass |
|||
else: |
|||
pass |
|||
pass |
|||
|
|||
pass |
|||
|
|||
# ----------------------清除无用id---------------------- |
|||
list_overlapping_all = list_overlapping_yellow_polygon + list_overlapping_blue_polygon |
|||
for id1 in list_overlapping_all: |
|||
is_found = False |
|||
for _, _, _, _, bbox_id,_ in list_bboxs: |
|||
if bbox_id == id1: |
|||
is_found = True |
|||
break |
|||
pass |
|||
pass |
|||
|
|||
if not is_found: |
|||
# 如果没找到,删除id |
|||
if id1 in list_overlapping_yellow_polygon: |
|||
list_overlapping_yellow_polygon.remove(id1) |
|||
pass |
|||
if id1 in list_overlapping_blue_polygon: |
|||
list_overlapping_blue_polygon.remove(id1) |
|||
|
|||
pass |
|||
print('delete id1='+str(id1)) |
|||
pass |
|||
list_overlapping_all.clear() |
|||
pass |
|||
|
|||
# 清空list |
|||
# list_bboxs.clear() |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,41 @@ |
|||
import time |
|||
import ec.zmqpub |
|||
# class names |
|||
names= [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', |
|||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', |
|||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', |
|||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', |
|||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', |
|||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', |
|||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', |
|||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', |
|||
'hair drier', 'toothbrush' ] |
|||
|
|||
|
|||
|
|||
waringnames=['行人', '直行车','摩托'] |
|||
waringclsids=[0, 1,3] |
|||
# 预警 |
|||
def filter(item_bbox,bboxlist,direction,shape): |
|||
x1, y1, x2, y2, track_id,cls_id= item_bbox |
|||
detectmodle = {} |
|||
detectmodle['track_id']=int(track_id) |
|||
detectmodle['lable']=names[int(cls_id)] |
|||
detectmodle['direction']=direction |
|||
newbox={} |
|||
newbox["x1"]=int(x1) |
|||
newbox["y1"]=int(y1) |
|||
newbox["x2"]=int(x2) |
|||
newbox["y2"]=int(y2) |
|||
detectmodle['box']=newbox |
|||
detectmodle['width']=int(shape[1]) |
|||
detectmodle['height']=int(shape[0]) |
|||
ec.zmqpub.sendcount(detectmodle) |
|||
# 不是行人退出 |
|||
if cls_id == 0: |
|||
ec.zmqpub.sendcwarning(detectmodle) |
|||
# return |
|||
# for bbox in bboxlist: |
|||
# x1, y1, x2, y2, track_id,cls_id= bbox |
|||
|
|||
|
@ -0,0 +1,34 @@ |
|||
import time |
|||
import zmq |
|||
import json |
|||
context = zmq.Context() |
|||
pubSocket = context.socket(zmq.PUB) |
|||
|
|||
pubSocket.connect('tcp://127.0.0.1:5001') |
|||
# pubSocket.SendMoreFrame("Topic").SendFrame("Pub from python") |
|||
#pubSocket.send_multipart(['Topic', 'Pub from python']) |
|||
# while True: |
|||
# msg = input("请输入要发布的信息:").strip() |
|||
# if msg == 'b': |
|||
# sys.exit() |
|||
# #socket.send(msg.encode('utf-8')) |
|||
# # socket.send_multipart('Topic'.encode('utf-8')) # 接收所有消息 |
|||
# #socket.send( 'Topic Pub from python'.encode('utf-8')) |
|||
# pubSocket.send_multipart(['Show_Single_Video001'.encode('utf-8'), '192.168.1.65'.encode('utf-8')]) |
|||
# time.sleep(1) |
|||
|
|||
def sendcount(detectionmodel): |
|||
detectionmodel["datetime"]=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) |
|||
resultjson= json.dumps(detectionmodel, ensure_ascii=False)#listToJson(tolist) |
|||
print("发送消息:",resultjson) |
|||
# topic='ai_detect_warning_data' |
|||
topic='ai_detect_count' |
|||
pubSocket.send_multipart([topic.encode('utf-8'), resultjson.encode('utf-8')]) |
|||
|
|||
def sendcwarning(detectionmodel): |
|||
detectionmodel["datetime"]=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) |
|||
resultjson= json.dumps(detectionmodel, ensure_ascii=False)#listToJson(tolist) |
|||
print("发送消息:",resultjson) |
|||
# topic='ai_detect_warning_data' |
|||
topic='ai_detect_warning' |
|||
pubSocket.send_multipart([topic.encode('utf-8'), resultjson.encode('utf-8')]) |
@ -0,0 +1,275 @@ |
|||
from operator import index |
|||
import sys |
|||
from numpy.core.fromnumeric import size |
|||
|
|||
from numpy.lib.nanfunctions import nanstd |
|||
sys.path.insert(0, './yolov5') |
|||
|
|||
from yolov5.utils.datasets import LoadImages, LoadStreams |
|||
# from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords |
|||
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh |
|||
from yolov5.utils.plots import Annotator, colors |
|||
from yolov5.utils.torch_utils import select_device, time_synchronized |
|||
from deep_sort_pytorch.utils.parser import get_config |
|||
from deep_sort_pytorch.deep_sort import DeepSort |
|||
import argparse |
|||
import os |
|||
import platform |
|||
import shutil |
|||
import time |
|||
from pathlib import Path |
|||
import cv2 |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
|
|||
from yolov5.utils.Point2GPS import * |
|||
import ec.countunit |
|||
|
|||
|
|||
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|||
|
|||
|
|||
|
|||
def detect(opt, save_img=False): |
|||
out, source, weights, view_img, save_txt, imgsz = \ |
|||
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size |
|||
webcam = source == '0' or source.startswith( |
|||
'rtsp') or source.startswith('rtmp') or source.startswith('http') or source.endswith('.txt') |
|||
|
|||
# initialize deepsort |
|||
cfg = get_config() |
|||
cfg.merge_from_file(opt.config_deepsort) |
|||
|
|||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, |
|||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
|||
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
|||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, |
|||
use_cuda=True) |
|||
# Initialize |
|||
device = select_device(opt.device) |
|||
if os.path.exists(out): |
|||
shutil.rmtree(out) # delete output folder |
|||
os.makedirs(out) # make new output folder |
|||
half = device.type != 'cpu' # half precision only supported on CUDA |
|||
|
|||
# Load model |
|||
model = torch.load(weights, map_location=device)[ |
|||
'model'].float() # load to FP32 |
|||
model.to(device).eval() |
|||
if half: |
|||
model.half() # to FP16 |
|||
|
|||
# Set Dataloader |
|||
vid_path, vid_writer = None, None |
|||
if webcam: |
|||
view_img = True |
|||
cudnn.benchmark = True # set True to speed up constant image size inference |
|||
dataset = LoadStreams(source, img_size=imgsz) |
|||
else: |
|||
view_img = True |
|||
save_img = True |
|||
dataset = LoadImages(source, img_size=imgsz) |
|||
|
|||
# Get names and colors |
|||
names = model.module.names if hasattr(model, 'module') else model.names |
|||
|
|||
# Run inference |
|||
t0 = time.time() |
|||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img |
|||
# run once |
|||
_ = model(img.half() if half else img) if device.type != 'cpu' else None |
|||
|
|||
save_path = str(Path(out)) |
|||
txt_path = str(Path(out)) + '/results.txt' |
|||
framenumber=0 |
|||
for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset): |
|||
draw_box=[] |
|||
# if(framenumber==0): |
|||
# continue |
|||
img = torch.from_numpy(img).to(device) |
|||
img = img.half() if half else img.float() # uint8 to fp16/32 |
|||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|||
if img.ndimension() == 3: |
|||
img = img.unsqueeze(0) |
|||
|
|||
|
|||
|
|||
# Inference |
|||
t1 = time_synchronized() |
|||
pred = model(img, augment=opt.augment)[0] |
|||
|
|||
# Apply NMS |
|||
pred = non_max_suppression( |
|||
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|||
t2 = time_synchronized() |
|||
|
|||
# Process detections |
|||
for i, det in enumerate(pred): # detections per image |
|||
if webcam: # batch_size >= 1 |
|||
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() |
|||
else: |
|||
p, s, im0 = path, '', im0s |
|||
# 设置显示窗体大小 |
|||
im0= cv2.resize(im0,opt.view_img_size) |
|||
|
|||
s += '%gx%g ' % img.shape[2:] # print string |
|||
save_path = str(Path(out) / Path(p).name) |
|||
|
|||
if det is not None and len(det): |
|||
|
|||
det[:, :4] = scale_coords( |
|||
img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# Print results |
|||
for c in det[:, -1].unique(): |
|||
n = (det[:, -1] == c).sum() # detections per class |
|||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string |
|||
|
|||
xywhs = xyxy2xywh(det[:, 0:4]) |
|||
confs = det[:, 4] |
|||
clss = det[:, 5] |
|||
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) |
|||
|
|||
|
|||
if outputs is not None and len(outputs) > 0: |
|||
|
|||
for j, (output, conf) in enumerate(zip(outputs, confs)): |
|||
|
|||
bboxes = output[0:4] |
|||
id = output[4] |
|||
cls = output[5] |
|||
|
|||
c = int(cls) # integer class |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
label = f'{id} {names[c]} {conf:.2f}' |
|||
color=colors(c, True) |
|||
draw_box.append([bboxes,label,color]) |
|||
|
|||
# draw_boxes(im0, bboxes, id,label) |
|||
# ori_im = draw_boxes2(im0, bbox_xyxy, identities, clsTracking, trace, h_inv) |
|||
|
|||
|
|||
|
|||
# Write MOT compliant results to file |
|||
if save_txt and len(outputs) != 0: |
|||
for j, output in enumerate(outputs): |
|||
bbox_left = output[0] |
|||
bbox_top = output[1] |
|||
bbox_w = output[2] |
|||
bbox_h = output[3] |
|||
identity = output[-1] |
|||
with open(txt_path, 'a') as f: |
|||
f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left, |
|||
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format |
|||
ec.countunit.addcount(outputs,im0) |
|||
|
|||
else: |
|||
deepsort.increment_ages() |
|||
|
|||
# Print time (inference + NMS) |
|||
# print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|||
|
|||
# Stream results |
|||
if view_img: |
|||
im0= ec.countunit.addtitlerectangle(im0) |
|||
annotator = Annotator(im0, line_width=2, pil=True) |
|||
|
|||
for bboxes,label,color in draw_box: |
|||
annotator.box_label(bboxes, label, color) |
|||
|
|||
|
|||
annotator.drawcount( ec.countunit.countlist, ec.countunit.clsnames) |
|||
im0=annotator.cvimg() |
|||
|
|||
im0= ec.countunit.addcolorimg(im0) |
|||
cv2.imshow(p, im0) |
|||
if cv2.waitKey(1) == ord('q'): # q to quit |
|||
raise StopIteration |
|||
if save_img: |
|||
print('saving video!') |
|||
if vid_path != save_path: # new video |
|||
vid_path = save_path |
|||
if isinstance(vid_writer, cv2.VideoWriter): |
|||
vid_writer.release() # release previous video writer |
|||
|
|||
fps =20# vid_cap.get(cv2.CAP_PROP_FPS) |
|||
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|||
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|||
vid_writer = cv2.VideoWriter( |
|||
save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps,opt.view_img_size) |
|||
vid_writer.write(im0) |
|||
|
|||
# Save results (image with detections) |
|||
# if save_img: |
|||
# print('saving img!') |
|||
# if dataset.mode == 'images': |
|||
# cv2.imwrite(save_path, im0) |
|||
# else: |
|||
# print('saving video!') |
|||
# if vid_path != save_path: # new video |
|||
# vid_path = save_path |
|||
# if isinstance(vid_writer, cv2.VideoWriter): |
|||
# vid_writer.release() # release previous video writer |
|||
|
|||
# fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|||
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|||
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|||
# vid_writer = cv2.VideoWriter( |
|||
# save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) |
|||
# vid_writer.write(im0) |
|||
|
|||
# if save_txt or save_img: |
|||
# print('Results saved to %s' % os.getcwd() + os.sep + out) |
|||
# if platform == 'darwin': # MacOS |
|||
# os.system('open ' + save_path) |
|||
|
|||
# print('Done. (%.3fs)' % (time.time() - t0)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
|
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, |
|||
default='yolov5/weights/yolov5s.pt', help='model.pt path') |
|||
# file/folder, 0 for webcam |
|||
parser.add_argument('--source', type=str, |
|||
# default='rtsp://admin:hk123456@192.168.1.65:554', help='source') |
|||
# default='F:/AIData/video/hqxjy.MP4', help='source') |
|||
default='rtsp://admin:hk123456@120.240.37.42:554', help='source') |
|||
|
|||
parser.add_argument('--output', type=str, default='inference/output', |
|||
help='output folder') # output folder |
|||
parser.add_argument('--img-size', type=int, default=960, |
|||
help='inference size (pixels)') |
|||
# conf 相似度 |
|||
parser.add_argument('--conf-thres', type=float, |
|||
default=0.5, help='object confidence threshold') |
|||
# 重叠去除 针对可能是 两种东西 |
|||
parser.add_argument('--iou-thres', type=float, |
|||
default=0.5, help='IOU threshold for NMS') |
|||
parser.add_argument('--fourcc', type=str, default='mp4v', |
|||
help='output video codec (verify ffmpeg support)') |
|||
parser.add_argument('--device', default='', |
|||
help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--view-img', action='store_true',default=True, |
|||
help='display results') |
|||
#显示窗体大小--- 注意 countunit.py img_size =(1920,1080)也要设置 |
|||
parser.add_argument('--view-img-size', type=int, default=(1920,1080), |
|||
help='inference size (pixels)') |
|||
parser.add_argument('--save-txt', action='store_true', |
|||
help='save results to *.txt') |
|||
# class 0 is person 跟踪类别 |
|||
parser.add_argument('--classes', nargs='+', type=int, |
|||
default=[0,1,2,3,5,7,16], help='filter by class') |
|||
parser.add_argument('--agnostic-nms', action='store_true', |
|||
help='class-agnostic NMS') |
|||
parser.add_argument('--augment', action='store_true', |
|||
help='augmented inference') |
|||
parser.add_argument("--config_deepsort", type=str, |
|||
default="deep_sort_pytorch/configs/deep_sort.yaml") |
|||
args = parser.parse_args() |
|||
args.img_size = check_img_size(args.img_size) |
|||
print(args) |
|||
|
|||
with torch.no_grad(): |
|||
detect(args) |
@ -0,0 +1,223 @@ |
|||
from operator import index |
|||
import sys |
|||
from numpy.core.fromnumeric import size |
|||
|
|||
from numpy.lib.nanfunctions import nanstd |
|||
sys.path.insert(0, './yolov5') |
|||
|
|||
from yolov5.utils.datasets import LoadImages, LoadStreams |
|||
# from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords |
|||
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh |
|||
from yolov5.utils.plots import Annotator, colors |
|||
from yolov5.utils.torch_utils import select_device, time_synchronized |
|||
from deep_sort_pytorch.utils.parser import get_config |
|||
from deep_sort_pytorch.deep_sort import DeepSort |
|||
import argparse |
|||
import os |
|||
import platform |
|||
import shutil |
|||
import time |
|||
from pathlib import Path |
|||
import cv2 |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
|
|||
from yolov5.utils.Point2GPS import * |
|||
from ec.countunit import addcolorimg,addtitlerectangle,addcount,countlist,clsnames |
|||
from detector import Detector |
|||
|
|||
# palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|||
|
|||
|
|||
|
|||
def detect(opt, save_img=False): |
|||
out, source, weights, view_img, save_txt, imgsz = \ |
|||
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size |
|||
webcam = source == '0' or source.startswith( |
|||
'rtsp') or source.startswith('rtmp') or source.startswith('http') or source.endswith('.txt') |
|||
|
|||
# initialize deepsort |
|||
cfg = get_config() |
|||
cfg.merge_from_file(opt.config_deepsort) |
|||
|
|||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, |
|||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
|||
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
|||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, |
|||
use_cuda=True) |
|||
# Initialize |
|||
# 初始化 yolov5 |
|||
detector = Detector(opt.img_size,opt.view_img_size,opt.weights) |
|||
# Set Dataloader |
|||
vid_path, vid_writer = None, None |
|||
|
|||
# Get names and colors |
|||
names=detector.names |
|||
draw_box=[] |
|||
|
|||
|
|||
save_path = str(Path(out)) |
|||
txt_path = str(Path(out)) + '/results.txt' |
|||
|
|||
vid_cap = cv2.VideoCapture('rtsp://admin:hk123456@120.240.37.42:554') |
|||
n=0 |
|||
while True: |
|||
# 读取每帧图片 |
|||
_, im0 = vid_cap.read() |
|||
if im0 is None: |
|||
time.sleep(1) |
|||
continue |
|||
n+=1 |
|||
# if n!=6: |
|||
# continue |
|||
# n=0 |
|||
# 缩小尺寸,1920x1080->960x540 |
|||
# im = cv2.resize(im, (960, 540)) |
|||
im0 = cv2.resize(im0, (1920, 1080)) |
|||
|
|||
if n==6: |
|||
n=0 |
|||
draw_box=[] |
|||
img, pred = detector.detect(im0) |
|||
# Apply NMS |
|||
pred = non_max_suppression( |
|||
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|||
t2 = time_synchronized() |
|||
|
|||
# Process detections |
|||
for i, det in enumerate(pred): # detections per image |
|||
|
|||
if det is not None and len(det): |
|||
|
|||
det[:, :4] = scale_coords( |
|||
img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# Print results |
|||
s='' |
|||
for c in det[:, -1].unique(): |
|||
n = (det[:, -1] == c).sum() # detections per class |
|||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string |
|||
|
|||
xywhs = xyxy2xywh(det[:, 0:4]) |
|||
confs = det[:, 4] |
|||
clss = det[:, 5] |
|||
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) |
|||
|
|||
|
|||
if outputs is not None and len(outputs) > 0: |
|||
|
|||
for j, (output, conf) in enumerate(zip(outputs, confs)): |
|||
|
|||
bboxes = output[0:4] |
|||
id = output[4] |
|||
cls = output[5] |
|||
|
|||
c = int(cls) # integer class |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
label = f'{id} {names[c]} {conf:.2f}' |
|||
# print('label=',label) |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
color=colors(c, True) |
|||
draw_box.append([bboxes,label,color]) |
|||
# annotator.box_label(bboxes, label, color=colors(c, True)) |
|||
|
|||
|
|||
addcount(outputs,im0) |
|||
|
|||
else: |
|||
deepsort.increment_ages() |
|||
|
|||
# Print time (inference + NMS) |
|||
# print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|||
|
|||
# Stream results |
|||
|
|||
if view_img: |
|||
|
|||
im0=addtitlerectangle(im0) |
|||
annotator = Annotator(im0, line_width=2, pil=True) |
|||
|
|||
for bboxes,label,color in draw_box: |
|||
annotator.box_label(bboxes, label, color) |
|||
|
|||
|
|||
annotator.drawcount(countlist,clsnames) |
|||
im0=annotator.cvimg() |
|||
|
|||
im0=addcolorimg(im0) |
|||
cv2.imshow("monitor", im0) |
|||
if cv2.waitKey(1) == ord('q'): # q to quit |
|||
raise StopIteration |
|||
|
|||
# Save results (image with detections) |
|||
# if save_img: |
|||
# print('saving img!') |
|||
# if dataset.mode == 'images': |
|||
# cv2.imwrite(save_path, im0) |
|||
# else: |
|||
# print('saving video!') |
|||
# if vid_path != save_path: # new video |
|||
# vid_path = save_path |
|||
# if isinstance(vid_writer, cv2.VideoWriter): |
|||
# vid_writer.release() # release previous video writer |
|||
|
|||
# fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|||
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|||
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|||
# vid_writer = cv2.VideoWriter( |
|||
# save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) |
|||
# vid_writer.write(im0) |
|||
|
|||
# if save_txt or save_img: |
|||
# print('Results saved to %s' % os.getcwd() + os.sep + out) |
|||
# if platform == 'darwin': # MacOS |
|||
# os.system('open ' + save_path) |
|||
|
|||
# print('Done. (%.3fs)' % (time.time() - t0)) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
|
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, |
|||
default='./yolov5/weights/yolov5s.pt', help='model.pt path') |
|||
# file/folder, 0 for webcam |
|||
parser.add_argument('--source', type=str, |
|||
# default='F:/AIData/video/test.MP4', help='source') |
|||
default='rtsp://admin:hk123456@120.240.37.42:554', help='source') |
|||
parser.add_argument('--output', type=str, default='inference/output', |
|||
help='output folder') # output folder |
|||
parser.add_argument('--img-size', type=int, default=960, |
|||
help='inference size (pixels)') |
|||
# conf 相似度 |
|||
parser.add_argument('--conf-thres', type=float, |
|||
default=0.5, help='object confidence threshold') |
|||
# 重叠去除 针对可能是 两种东西 |
|||
parser.add_argument('--iou-thres', type=float, |
|||
default=0.5, help='IOU threshold for NMS') |
|||
parser.add_argument('--fourcc', type=str, default='mp4v', |
|||
help='output video codec (verify ffmpeg support)') |
|||
parser.add_argument('--device', default='', |
|||
help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--view-img', action='store_true',default=True, |
|||
help='display results') |
|||
#显示窗体大小--- 注意 countunit.py img_size =(1920,1080)也要设置 |
|||
parser.add_argument('--view-img-size', type=int, default=(1920,1080), |
|||
help='inference size (pixels)') |
|||
parser.add_argument('--save-txt', action='store_true', |
|||
help='save results to *.txt') |
|||
# class 0 is person 跟踪类别 |
|||
parser.add_argument('--classes', nargs='+', type=int, |
|||
default=[0,1,2,3,5,7,16], help='filter by class') |
|||
parser.add_argument('--agnostic-nms', action='store_true', |
|||
help='class-agnostic NMS') |
|||
parser.add_argument('--augment', action='store_true', |
|||
help='augmented inference') |
|||
parser.add_argument("--config_deepsort", type=str, |
|||
default="deep_sort_pytorch/configs/deep_sort.yaml") |
|||
args = parser.parse_args() |
|||
args.img_size = check_img_size(args.img_size) |
|||
print(args) |
|||
|
|||
with torch.no_grad(): |
|||
detect(args) |
@ -0,0 +1,213 @@ |
|||
from operator import index |
|||
import sys |
|||
from typing import Optional |
|||
from numpy.core.fromnumeric import size |
|||
|
|||
from numpy.lib.nanfunctions import nanstd |
|||
sys.path.insert(0, './yolov5') |
|||
|
|||
from yolov5.utils.datasets import LoadImages, LoadStreams |
|||
# from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords |
|||
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh |
|||
from yolov5.utils.plots import Annotator, colors |
|||
from yolov5.utils.torch_utils import select_device, time_synchronized |
|||
from deep_sort_pytorch.utils.parser import get_config |
|||
from deep_sort_pytorch.deep_sort import DeepSort |
|||
import argparse |
|||
import os |
|||
import platform |
|||
import shutil |
|||
import time |
|||
import zmq |
|||
import json |
|||
from pathlib import Path |
|||
import cv2 |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
|
|||
from yolov5.utils.Point2GPS import * |
|||
from ec.countunit import addcolorimg,addtitlerectangle,addcount,countlist,clsnames |
|||
from detector import Detector |
|||
|
|||
# palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|||
|
|||
|
|||
|
|||
def detectimage(opt,ip,filename, save_img=False): |
|||
inpath,out, weights, view_img, imgsz = \ |
|||
opt.inpath,opt.output, opt.weights, opt.view_img, opt.img_size |
|||
# Get names and colors |
|||
detector,deepsort=opt.detector,opt.deepsort |
|||
names= detector.names |
|||
draw_box=[] |
|||
# Set Dataloader |
|||
vid_path, vid_writer = None, None |
|||
|
|||
save_path = str(Path(out)) |
|||
txt_path = str(Path(out)) + '/results.txt' |
|||
imgpath =inpath+filename |
|||
t0=time.time() |
|||
im0 =cv2.imread(imgpath) |
|||
|
|||
# 缩小尺寸,1920x1080->960x540 |
|||
|
|||
# im0 = cv2.resize(im, (1024, 640)) |
|||
|
|||
|
|||
draw_box=[] |
|||
img, pred = detector.detect(im0) |
|||
t1=time.time() |
|||
|
|||
print('%sDone. (%.3fs)' % (filename, t1 - t0)) |
|||
# Apply NMS |
|||
pred = non_max_suppression( |
|||
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|||
t2 = time_synchronized() |
|||
|
|||
# Process detections |
|||
for i, det in enumerate(pred): # detections per image |
|||
|
|||
if det is not None and len(det): |
|||
|
|||
det[:, :4] = scale_coords( |
|||
img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# Print results |
|||
s='' |
|||
for c in det[:, -1].unique(): |
|||
n = (det[:, -1] == c).sum() # detections per class |
|||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string |
|||
|
|||
xywhs = xyxy2xywh(det[:, 0:4]) |
|||
confs = det[:, 4] |
|||
clss = det[:, 5] |
|||
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) |
|||
t2=time.time() |
|||
print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|||
if outputs is not None and len(outputs) > 0: |
|||
|
|||
for j, (output, conf) in enumerate(zip(outputs, confs)): |
|||
|
|||
bboxes = output[0:4] |
|||
id = output[4] |
|||
cls = output[5] |
|||
|
|||
c = int(cls) # integer class |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
label = f'{id} {names[c]} {conf:.2f}' |
|||
# print('label=',label) |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
color=colors(c, True) |
|||
draw_box.append([bboxes,label,color]) |
|||
# annotator.box_label(bboxes, label, color=colors(c, True)) |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
else: |
|||
deepsort.increment_ages() |
|||
|
|||
# Print time (inference + NMS) |
|||
|
|||
|
|||
# Stream results |
|||
|
|||
if view_img: |
|||
|
|||
|
|||
annotator = Annotator(im0, line_width=2, pil=False) |
|||
|
|||
for bboxes,label,color in draw_box: |
|||
annotator.box_label(bboxes, label, color) |
|||
im0=annotator.cvimg() |
|||
cv2.imshow("monitor", im0) |
|||
if cv2.waitKey(1) == ord('q'): # q to quit |
|||
raise StopIteration |
|||
|
|||
# Save results (image with detections) |
|||
if save_img and len(draw_box)>0: |
|||
savefilename=save_path+"/"+filename |
|||
cv2.imwrite(savefilename, im0) |
|||
|
|||
# print('Done. (%.3fs)' % (time.time() - t0)) |
|||
|
|||
def main(opt): |
|||
|
|||
|
|||
# initialize deepsort |
|||
cfg = get_config() |
|||
cfg.merge_from_file(opt.config_deepsort) |
|||
|
|||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, |
|||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
|||
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
|||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, |
|||
use_cuda=True) |
|||
# Initialize |
|||
# 初始化 yolov5 |
|||
detector = Detector(opt.img_size,opt.view_img_size,opt.weights) |
|||
opt.deepsort=deepsort |
|||
opt.detector=detector |
|||
|
|||
context = zmq.Context() |
|||
socket = context.socket(zmq.SUB) |
|||
socket.connect("tcp://localhost:5000") |
|||
socket.setsockopt_string(zmq.SUBSCRIBE,'detect_image_input_001') |
|||
while True: |
|||
try: |
|||
topic = socket.recv_string() |
|||
in_json = socket.recv_string() |
|||
print('topic:',topic) |
|||
print('message:',in_json) |
|||
imagemodel= json.loads(in_json) |
|||
detectimage(opt,imagemodel['ip'],imagemodel['filename'],True) |
|||
|
|||
except BaseException as ex: |
|||
print('错误...',ex) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
|
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, |
|||
default='./yolov5/weights/yolov5s.pt', help='model.pt path') |
|||
|
|||
parser.add_argument('--inpath', type=str, default='F:/TestImage/input/', |
|||
help='inpath folder') # output folder |
|||
parser.add_argument('--output', type=str, default='inference/output/', |
|||
help='output folder') # output folder |
|||
parser.add_argument('--img-size', type=int, default=960, |
|||
help='inference size (pixels)') |
|||
# conf 相似度 |
|||
parser.add_argument('--conf-thres', type=float, |
|||
default=0.5, help='object confidence threshold') |
|||
# 重叠去除 针对可能是 两种东西 |
|||
parser.add_argument('--iou-thres', type=float, |
|||
default=0.5, help='IOU threshold for NMS') |
|||
parser.add_argument('--fourcc', type=str, default='mp4v', |
|||
help='output video codec (verify ffmpeg support)') |
|||
parser.add_argument('--device', default='', |
|||
help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--view-img', action='store_true',default=True, |
|||
help='display results') |
|||
#显示窗体大小--- 注意 countunit.py img_size =(1920,1080)也要设置 |
|||
parser.add_argument('--view-img-size', type=int, default=(1920,1080), |
|||
help='inference size (pixels)') |
|||
# parser.add_argument('--save-txt', action='store_true', |
|||
# help='save results to *.txt') |
|||
# class 0 is person 跟踪类别 |
|||
parser.add_argument('--classes', nargs='+', type=int, |
|||
default=[0,1,2,3,5,7,16], help='filter by class') |
|||
parser.add_argument('--agnostic-nms', action='store_true', |
|||
help='class-agnostic NMS') |
|||
parser.add_argument('--augment', action='store_true', |
|||
help='augmented inference') |
|||
parser.add_argument("--config_deepsort", type=str, |
|||
default="deep_sort_pytorch/configs/deep_sort.yaml") |
|||
args = parser.parse_args() |
|||
args.img_size = check_img_size(args.img_size) |
|||
print(args) |
|||
|
|||
with torch.no_grad(): |
|||
main(args) |
@ -0,0 +1,209 @@ |
|||
from operator import index |
|||
import sys |
|||
from typing import Optional |
|||
from numpy.core.fromnumeric import size |
|||
|
|||
from numpy.lib.nanfunctions import nanstd |
|||
sys.path.insert(0, './yolov5') |
|||
|
|||
from yolov5.utils.datasets import LoadImages, LoadStreams |
|||
# from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords |
|||
from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords, xyxy2xywh |
|||
from yolov5.utils.plots import Annotator, colors |
|||
from yolov5.utils.torch_utils import select_device, time_synchronized |
|||
from deep_sort_pytorch.utils.parser import get_config |
|||
from deep_sort_pytorch.deep_sort import DeepSort |
|||
import argparse |
|||
import os |
|||
import platform |
|||
import shutil |
|||
import time |
|||
import zmq |
|||
import json |
|||
from pathlib import Path |
|||
import cv2 |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
|
|||
from yolov5.utils.Point2GPS import * |
|||
from ec.countunit import addcolorimg,addtitlerectangle,addcount,countlist,clsnames |
|||
from detector import Detector |
|||
|
|||
# palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|||
|
|||
|
|||
|
|||
def detectimage(opt,ip,filename, save_img=False): |
|||
inpath,out, weights, view_img, imgsz = \ |
|||
opt.inpath,opt.output, opt.weights, opt.view_img, opt.img_size |
|||
# Get names and colors |
|||
detector,deepsort=opt.detector,opt.deepsort |
|||
names= detector.names |
|||
draw_box=[] |
|||
# Set Dataloader |
|||
vid_path, vid_writer = None, None |
|||
|
|||
save_path = str(Path(out)) |
|||
txt_path = str(Path(out)) + '/results.txt' |
|||
imgpath =inpath+filename |
|||
t0=time.time() |
|||
im0 =cv2.imread(imgpath) |
|||
|
|||
# 缩小尺寸,1920x1080->960x540 |
|||
|
|||
# im0 = cv2.resize(im, (1024, 640)) |
|||
|
|||
|
|||
draw_box=[] |
|||
img, pred = detector.detect(im0) |
|||
t1=time.time() |
|||
|
|||
print('%sDone. (%.3fs)' % (filename, t1 - t0)) |
|||
# Apply NMS |
|||
pred = non_max_suppression( |
|||
pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|||
t2 = time_synchronized() |
|||
|
|||
# Process detections |
|||
for i, det in enumerate(pred): # detections per image |
|||
|
|||
if det is not None and len(det): |
|||
|
|||
det[:, :4] = scale_coords( |
|||
img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# Print results |
|||
s='' |
|||
for c in det[:, -1].unique(): |
|||
n = (det[:, -1] == c).sum() # detections per class |
|||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string |
|||
|
|||
xywhs = xyxy2xywh(det[:, 0:4]) |
|||
confs = det[:, 4] |
|||
clss = det[:, 5] |
|||
print("xywhs=",xywhs.cpu()) |
|||
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) |
|||
t2=time.time() |
|||
print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|||
|
|||
print('outputs=',outputs) |
|||
if outputs is not None and len(outputs) > 0: |
|||
|
|||
for j, (output, conf) in enumerate(zip(outputs, confs)): |
|||
|
|||
bboxes = output[0:4] |
|||
id = output[4] |
|||
cls = output[5] |
|||
|
|||
c = int(cls) # integer class |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
label = f'{id} {names[c]} {conf:.2f}' |
|||
# print('label=',label) |
|||
# label = f'{names[c]} {conf:.2f}' |
|||
color=colors(c, True) |
|||
draw_box.append([bboxes,label,color]) |
|||
# annotator.box_label(bboxes, label, color=colors(c, True)) |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
else: |
|||
deepsort.increment_ages() |
|||
|
|||
# Print time (inference + NMS) |
|||
|
|||
|
|||
# Stream results |
|||
|
|||
if view_img: |
|||
|
|||
|
|||
annotator = Annotator(im0, line_width=2, pil=False) |
|||
|
|||
for bboxes,label,color in draw_box: |
|||
annotator.box_label(bboxes, label, color) |
|||
im0=annotator.cvimg() |
|||
cv2.imshow("monitor", im0) |
|||
if cv2.waitKey(1) == ord('q'): # q to quit |
|||
raise StopIteration |
|||
|
|||
# Save results (image with detections) |
|||
if save_img and len(draw_box)>0: |
|||
savefilename=save_path+"/"+filename |
|||
cv2.imwrite(savefilename, im0) |
|||
|
|||
# print('Done. (%.3fs)' % (time.time() - t0)) |
|||
|
|||
def main(opt): |
|||
|
|||
|
|||
# initialize deepsort |
|||
cfg = get_config() |
|||
cfg.merge_from_file(opt.config_deepsort) |
|||
|
|||
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, |
|||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, |
|||
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, |
|||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, |
|||
use_cuda=True) |
|||
# Initialize |
|||
# 初始化 yolov5 |
|||
detector = Detector(opt.img_size,opt.view_img_size,opt.weights) |
|||
opt.deepsort=deepsort |
|||
opt.detector=detector |
|||
|
|||
|
|||
while True: |
|||
try: |
|||
filename = input("输入文件").strip() |
|||
detectimage(opt,'',filename,True) |
|||
|
|||
except BaseException as ex: |
|||
print('错误...',ex) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
|
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, |
|||
default='./yolov5/weights/yolov5s.pt', help='model.pt path') |
|||
|
|||
parser.add_argument('--inpath', type=str, default='F:/TestImage/input/', |
|||
help='inpath folder') # output folder |
|||
parser.add_argument('--output', type=str, default='inference/output/', |
|||
help='output folder') # output folder |
|||
parser.add_argument('--img-size', type=int, default=960, |
|||
help='inference size (pixels)') |
|||
# conf 相似度 |
|||
parser.add_argument('--conf-thres', type=float, |
|||
default=0.5, help='object confidence threshold') |
|||
# 重叠去除 针对可能是 两种东西 |
|||
parser.add_argument('--iou-thres', type=float, |
|||
default=0.5, help='IOU threshold for NMS') |
|||
parser.add_argument('--fourcc', type=str, default='mp4v', |
|||
help='output video codec (verify ffmpeg support)') |
|||
parser.add_argument('--device', default='', |
|||
help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--view-img', action='store_true',default=True, |
|||
help='display results') |
|||
#显示窗体大小--- 注意 countunit.py img_size =(1920,1080)也要设置 |
|||
parser.add_argument('--view-img-size', type=int, default=(1920,1080), |
|||
help='inference size (pixels)') |
|||
# parser.add_argument('--save-txt', action='store_true', |
|||
# help='save results to *.txt') |
|||
# class 0 is person 跟踪类别 |
|||
parser.add_argument('--classes', nargs='+', type=int, |
|||
default=[0,1,2,3,5,7,16], help='filter by class') |
|||
parser.add_argument('--agnostic-nms', action='store_true', |
|||
help='class-agnostic NMS') |
|||
parser.add_argument('--augment', action='store_true', |
|||
help='augmented inference') |
|||
parser.add_argument("--config_deepsort", type=str, |
|||
default="deep_sort_pytorch/configs/deep_sort.yaml") |
|||
args = parser.parse_args() |
|||
args.img_size = check_img_size(args.img_size) |
|||
print(args) |
|||
|
|||
with torch.no_grad(): |
|||
main(args) |
@ -0,0 +1,13 @@ |
|||
# pip install -U -r requirements.txt |
|||
Cython |
|||
matplotlib>=3.2.2 |
|||
numpy>=1.18.5 |
|||
opencv-python>=4.1.2 |
|||
Pillow |
|||
PyYAML>=5.3 |
|||
scipy>=1.4.1 |
|||
tensorboard>=2.2 |
|||
torch>=1.7.0 |
|||
torchvision>=0.8.1 |
|||
tqdm>=4.41.0 |
|||
seaborn>=0.11.0 |
@ -0,0 +1,216 @@ |
|||
# Repo-specific DockerIgnore ------------------------------------------------------------------------------------------- |
|||
#.git |
|||
.cache |
|||
.idea |
|||
runs |
|||
output |
|||
coco |
|||
storage.googleapis.com |
|||
|
|||
data/samples/* |
|||
**/results*.txt |
|||
*.jpg |
|||
|
|||
# Neural Network weights ----------------------------------------------------------------------------------------------- |
|||
**/*.weights |
|||
**/*.pt |
|||
**/*.pth |
|||
**/*.onnx |
|||
**/*.mlmodel |
|||
**/*.torchscript |
|||
|
|||
|
|||
# Below Copied From .gitignore ----------------------------------------------------------------------------------------- |
|||
# Below Copied From .gitignore ----------------------------------------------------------------------------------------- |
|||
|
|||
|
|||
# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- |
|||
# Byte-compiled / optimized / DLL files |
|||
__pycache__/ |
|||
*.py[cod] |
|||
*$py.class |
|||
|
|||
# C extensions |
|||
*.so |
|||
|
|||
# Distribution / packaging |
|||
.Python |
|||
env/ |
|||
build/ |
|||
develop-eggs/ |
|||
dist/ |
|||
downloads/ |
|||
eggs/ |
|||
.eggs/ |
|||
lib/ |
|||
lib64/ |
|||
parts/ |
|||
sdist/ |
|||
var/ |
|||
wheels/ |
|||
*.egg-info/ |
|||
wandb/ |
|||
.installed.cfg |
|||
*.egg |
|||
|
|||
# PyInstaller |
|||
# Usually these files are written by a python script from a template |
|||
# before PyInstaller builds the exe, so as to inject date/other infos into it. |
|||
*.manifest |
|||
*.spec |
|||
|
|||
# Installer logs |
|||
pip-log.txt |
|||
pip-delete-this-directory.txt |
|||
|
|||
# Unit test / coverage reports |
|||
htmlcov/ |
|||
.tox/ |
|||
.coverage |
|||
.coverage.* |
|||
.cache |
|||
nosetests.xml |
|||
coverage.xml |
|||
*.cover |
|||
.hypothesis/ |
|||
|
|||
# Translations |
|||
*.mo |
|||
*.pot |
|||
|
|||
# Django stuff: |
|||
*.log |
|||
local_settings.py |
|||
|
|||
# Flask stuff: |
|||
instance/ |
|||
.webassets-cache |
|||
|
|||
# Scrapy stuff: |
|||
.scrapy |
|||
|
|||
# Sphinx documentation |
|||
docs/_build/ |
|||
|
|||
# PyBuilder |
|||
target/ |
|||
|
|||
# Jupyter Notebook |
|||
.ipynb_checkpoints |
|||
|
|||
# pyenv |
|||
.python-version |
|||
|
|||
# celery beat schedule file |
|||
celerybeat-schedule |
|||
|
|||
# SageMath parsed files |
|||
*.sage.py |
|||
|
|||
# dotenv |
|||
.env |
|||
|
|||
# virtualenv |
|||
.venv* |
|||
venv*/ |
|||
ENV*/ |
|||
|
|||
# Spyder project settings |
|||
.spyderproject |
|||
.spyproject |
|||
|
|||
# Rope project settings |
|||
.ropeproject |
|||
|
|||
# mkdocs documentation |
|||
/site |
|||
|
|||
# mypy |
|||
.mypy_cache/ |
|||
|
|||
|
|||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- |
|||
|
|||
# General |
|||
.DS_Store |
|||
.AppleDouble |
|||
.LSOverride |
|||
|
|||
# Icon must end with two \r |
|||
Icon |
|||
Icon? |
|||
|
|||
# Thumbnails |
|||
._* |
|||
|
|||
# Files that might appear in the root of a volume |
|||
.DocumentRevisions-V100 |
|||
.fseventsd |
|||
.Spotlight-V100 |
|||
.TemporaryItems |
|||
.Trashes |
|||
.VolumeIcon.icns |
|||
.com.apple.timemachine.donotpresent |
|||
|
|||
# Directories potentially created on remote AFP share |
|||
.AppleDB |
|||
.AppleDesktop |
|||
Network Trash Folder |
|||
Temporary Items |
|||
.apdisk |
|||
|
|||
|
|||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore |
|||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm |
|||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 |
|||
|
|||
# User-specific stuff: |
|||
.idea/* |
|||
.idea/**/workspace.xml |
|||
.idea/**/tasks.xml |
|||
.idea/dictionaries |
|||
.html # Bokeh Plots |
|||
.pg # TensorFlow Frozen Graphs |
|||
.avi # videos |
|||
|
|||
# Sensitive or high-churn files: |
|||
.idea/**/dataSources/ |
|||
.idea/**/dataSources.ids |
|||
.idea/**/dataSources.local.xml |
|||
.idea/**/sqlDataSources.xml |
|||
.idea/**/dynamic.xml |
|||
.idea/**/uiDesigner.xml |
|||
|
|||
# Gradle: |
|||
.idea/**/gradle.xml |
|||
.idea/**/libraries |
|||
|
|||
# CMake |
|||
cmake-build-debug/ |
|||
cmake-build-release/ |
|||
|
|||
# Mongo Explorer plugin: |
|||
.idea/**/mongoSettings.xml |
|||
|
|||
## File-based project format: |
|||
*.iws |
|||
|
|||
## Plugin-specific files: |
|||
|
|||
# IntelliJ |
|||
out/ |
|||
|
|||
# mpeltonen/sbt-idea plugin |
|||
.idea_modules/ |
|||
|
|||
# JIRA plugin |
|||
atlassian-ide-plugin.xml |
|||
|
|||
# Cursive Clojure plugin |
|||
.idea/replstate.xml |
|||
|
|||
# Crashlytics plugin (for Android Studio and IntelliJ) |
|||
com_crashlytics_export_strings.xml |
|||
crashlytics.properties |
|||
crashlytics-build.properties |
|||
fabric.properties |
@ -0,0 +1,2 @@ |
|||
# this drop notebooks from GitHub language stats |
|||
*.ipynb linguist-vendored |
@ -0,0 +1,55 @@ |
|||
--- |
|||
name: "🐛 Bug report" |
|||
about: Create a report to help us improve |
|||
title: '' |
|||
labels: bug |
|||
assignees: '' |
|||
|
|||
--- |
|||
|
|||
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you: |
|||
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo |
|||
- **Common dataset**: coco.yaml or coco128.yaml |
|||
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments |
|||
|
|||
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`. |
|||
|
|||
|
|||
## 🐛 Bug |
|||
A clear and concise description of what the bug is. |
|||
|
|||
|
|||
## To Reproduce (REQUIRED) |
|||
|
|||
Input: |
|||
``` |
|||
import torch |
|||
|
|||
a = torch.tensor([5]) |
|||
c = a / 0 |
|||
``` |
|||
|
|||
Output: |
|||
``` |
|||
Traceback (most recent call last): |
|||
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code |
|||
exec(code_obj, self.user_global_ns, self.user_ns) |
|||
File "<ipython-input-5-be04c762b799>", line 5, in <module> |
|||
c = a / 0 |
|||
RuntimeError: ZeroDivisionError |
|||
``` |
|||
|
|||
|
|||
## Expected behavior |
|||
A clear and concise description of what you expected to happen. |
|||
|
|||
|
|||
## Environment |
|||
If applicable, add screenshots to help explain your problem. |
|||
|
|||
- OS: [e.g. Ubuntu] |
|||
- GPU [e.g. 2080 Ti] |
|||
|
|||
|
|||
## Additional context |
|||
Add any other context about the problem here. |
@ -0,0 +1,27 @@ |
|||
--- |
|||
name: "🚀 Feature request" |
|||
about: Suggest an idea for this project |
|||
title: '' |
|||
labels: enhancement |
|||
assignees: '' |
|||
|
|||
--- |
|||
|
|||
## 🚀 Feature |
|||
<!-- A clear and concise description of the feature proposal --> |
|||
|
|||
## Motivation |
|||
|
|||
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> |
|||
|
|||
## Pitch |
|||
|
|||
<!-- A clear and concise description of what you want to happen. --> |
|||
|
|||
## Alternatives |
|||
|
|||
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> |
|||
|
|||
## Additional context |
|||
|
|||
<!-- Add any other context or screenshots about the feature request here. --> |
@ -0,0 +1,13 @@ |
|||
--- |
|||
name: "❓Question" |
|||
about: Ask a general question |
|||
title: '' |
|||
labels: question |
|||
assignees: '' |
|||
|
|||
--- |
|||
|
|||
## ❔Question |
|||
|
|||
|
|||
## Additional context |
@ -0,0 +1,12 @@ |
|||
version: 2 |
|||
updates: |
|||
- package-ecosystem: pip |
|||
directory: "/" |
|||
schedule: |
|||
interval: weekly |
|||
time: "04:00" |
|||
open-pull-requests-limit: 10 |
|||
reviewers: |
|||
- glenn-jocher |
|||
labels: |
|||
- dependencies |
@ -0,0 +1,79 @@ |
|||
name: CI CPU testing |
|||
|
|||
on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows |
|||
push: |
|||
branches: [ master ] |
|||
pull_request: |
|||
# The branches below must be a subset of the branches above |
|||
branches: [ master ] |
|||
schedule: |
|||
- cron: '0 0 * * *' # Runs at 00:00 UTC every day |
|||
|
|||
jobs: |
|||
cpu-tests: |
|||
|
|||
runs-on: ${{ matrix.os }} |
|||
strategy: |
|||
fail-fast: false |
|||
matrix: |
|||
os: [ubuntu-latest, macos-latest, windows-latest] |
|||
python-version: [3.8] |
|||
model: ['yolov5s'] # models to test |
|||
|
|||
# Timeout: https://stackoverflow.com/a/59076067/4521646 |
|||
timeout-minutes: 50 |
|||
steps: |
|||
- uses: actions/checkout@v2 |
|||
- name: Set up Python ${{ matrix.python-version }} |
|||
uses: actions/setup-python@v2 |
|||
with: |
|||
python-version: ${{ matrix.python-version }} |
|||
|
|||
# Note: This uses an internal pip API and may not always work |
|||
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow |
|||
- name: Get pip cache |
|||
id: pip-cache |
|||
run: | |
|||
python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)" |
|||
|
|||
- name: Cache pip |
|||
uses: actions/cache@v1 |
|||
with: |
|||
path: ${{ steps.pip-cache.outputs.dir }} |
|||
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }} |
|||
restore-keys: | |
|||
${{ runner.os }}-${{ matrix.python-version }}-pip- |
|||
|
|||
- name: Install dependencies |
|||
run: | |
|||
python -m pip install --upgrade pip |
|||
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html |
|||
pip install -q onnx |
|||
python --version |
|||
pip --version |
|||
pip list |
|||
shell: bash |
|||
|
|||
- name: Download data |
|||
run: | |
|||
# curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip |
|||
# unzip -q tmp.zip -d ../ |
|||
# rm tmp.zip |
|||
|
|||
- name: Tests workflow |
|||
run: | |
|||
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories |
|||
di=cpu # inference devices # define device |
|||
|
|||
# train |
|||
python train.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di |
|||
# detect |
|||
python detect.py --weights weights/${{ matrix.model }}.pt --device $di |
|||
python detect.py --weights runs/train/exp/weights/last.pt --device $di |
|||
# test |
|||
python test.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --device $di |
|||
python test.py --img 256 --batch 8 --weights runs/train/exp/weights/last.pt --device $di |
|||
|
|||
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect |
|||
python models/export.py --img 256 --batch 1 --weights weights/${{ matrix.model }}.pt # export |
|||
shell: bash |
@ -0,0 +1,54 @@ |
|||
# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities. |
|||
# https://github.com/github/codeql-action |
|||
|
|||
name: "CodeQL" |
|||
|
|||
on: |
|||
schedule: |
|||
- cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month |
|||
|
|||
jobs: |
|||
analyze: |
|||
name: Analyze |
|||
runs-on: ubuntu-latest |
|||
|
|||
strategy: |
|||
fail-fast: false |
|||
matrix: |
|||
language: [ 'python' ] |
|||
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ] |
|||
# Learn more: |
|||
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed |
|||
|
|||
steps: |
|||
- name: Checkout repository |
|||
uses: actions/checkout@v2 |
|||
|
|||
# Initializes the CodeQL tools for scanning. |
|||
- name: Initialize CodeQL |
|||
uses: github/codeql-action/init@v1 |
|||
with: |
|||
languages: ${{ matrix.language }} |
|||
# If you wish to specify custom queries, you can do so here or in a config file. |
|||
# By default, queries listed here will override any specified in a config file. |
|||
# Prefix the list here with "+" to use these queries and those in the config file. |
|||
# queries: ./path/to/local/query, your-org/your-repo/queries@main |
|||
|
|||
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java). |
|||
# If this step fails, then you should remove it and run the build manually (see below) |
|||
- name: Autobuild |
|||
uses: github/codeql-action/autobuild@v1 |
|||
|
|||
# ℹ️ Command-line programs to run using the OS shell. |
|||
# 📚 https://git.io/JvXDl |
|||
|
|||
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines |
|||
# and modify them (or add more) to build your code if your project |
|||
# uses a compiled language |
|||
|
|||
#- run: | |
|||
# make bootstrap |
|||
# make release |
|||
|
|||
- name: Perform CodeQL Analysis |
|||
uses: github/codeql-action/analyze@v1 |
@ -0,0 +1,55 @@ |
|||
name: Greetings |
|||
|
|||
on: [pull_request_target, issues] |
|||
|
|||
jobs: |
|||
greeting: |
|||
runs-on: ubuntu-latest |
|||
steps: |
|||
- uses: actions/first-interaction@v1 |
|||
with: |
|||
repo-token: ${{ secrets.GITHUB_TOKEN }} |
|||
pr-message: | |
|||
👋 Hello @${{ github.actor }}, thank you for submitting a 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to: |
|||
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master update by running the following, replacing 'feature' with the name of your local branch: |
|||
```bash |
|||
git remote add upstream https://github.com/ultralytics/yolov5.git |
|||
git fetch upstream |
|||
git checkout feature # <----- replace 'feature' with local branch name |
|||
git rebase upstream/master |
|||
git push -u origin -f |
|||
``` |
|||
- ✅ Verify all Continuous Integration (CI) **checks are passing**. |
|||
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee |
|||
|
|||
issue-message: | |
|||
👋 Hello @${{ github.actor }}, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607). |
|||
|
|||
If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you. |
|||
|
|||
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available. |
|||
|
|||
For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com. |
|||
|
|||
## Requirements |
|||
|
|||
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run: |
|||
```bash |
|||
$ pip install -r requirements.txt |
|||
``` |
|||
|
|||
## Environments |
|||
|
|||
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): |
|||
|
|||
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> |
|||
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5) |
|||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) |
|||
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)  |
|||
|
|||
## Status |
|||
|
|||
 |
|||
|
|||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. |
|||
|
@ -0,0 +1,21 @@ |
|||
name: Automatic Rebase |
|||
# https://github.com/marketplace/actions/automatic-rebase |
|||
|
|||
on: |
|||
issue_comment: |
|||
types: [created] |
|||
|
|||
jobs: |
|||
rebase: |
|||
name: Rebase |
|||
if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase') |
|||
runs-on: ubuntu-latest |
|||
steps: |
|||
- name: Checkout the latest code |
|||
uses: actions/checkout@v2 |
|||
with: |
|||
fetch-depth: 0 |
|||
- name: Automatic Rebase |
|||
uses: cirrus-actions/rebase@1.3.1 |
|||
env: |
|||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} |
@ -0,0 +1,18 @@ |
|||
name: Close stale issues |
|||
on: |
|||
schedule: |
|||
- cron: "0 0 * * *" |
|||
|
|||
jobs: |
|||
stale: |
|||
runs-on: ubuntu-latest |
|||
steps: |
|||
- uses: actions/stale@v3 |
|||
with: |
|||
repo-token: ${{ secrets.GITHUB_TOKEN }} |
|||
stale-issue-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.' |
|||
stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.' |
|||
days-before-stale: 30 |
|||
days-before-close: 5 |
|||
exempt-issue-labels: 'documentation,tutorial' |
|||
operations-per-run: 100 # The maximum number of operations per run, used to control rate limiting. |
@ -0,0 +1,252 @@ |
|||
# Repo-specific GitIgnore ---------------------------------------------------------------------------------------------- |
|||
*.jpg |
|||
*.jpeg |
|||
*.png |
|||
*.bmp |
|||
*.tif |
|||
*.tiff |
|||
*.heic |
|||
*.JPG |
|||
*.JPEG |
|||
*.PNG |
|||
*.BMP |
|||
*.TIF |
|||
*.TIFF |
|||
*.HEIC |
|||
*.mp4 |
|||
*.mov |
|||
*.MOV |
|||
*.avi |
|||
*.data |
|||
*.json |
|||
|
|||
*.cfg |
|||
!cfg/yolov3*.cfg |
|||
|
|||
storage.googleapis.com |
|||
runs/* |
|||
data/* |
|||
!data/images/zidane.jpg |
|||
!data/images/bus.jpg |
|||
!data/coco.names |
|||
!data/coco_paper.names |
|||
!data/coco.data |
|||
!data/coco_*.data |
|||
!data/coco_*.txt |
|||
!data/trainvalno5k.shapes |
|||
!data/*.sh |
|||
|
|||
pycocotools/* |
|||
results*.txt |
|||
gcp_test*.sh |
|||
|
|||
# Datasets ------------------------------------------------------------------------------------------------------------- |
|||
coco/ |
|||
coco128/ |
|||
VOC/ |
|||
|
|||
# MATLAB GitIgnore ----------------------------------------------------------------------------------------------------- |
|||
*.m~ |
|||
*.mat |
|||
!targets*.mat |
|||
|
|||
# Neural Network weights ----------------------------------------------------------------------------------------------- |
|||
*.weights |
|||
*.pt |
|||
*.onnx |
|||
*.mlmodel |
|||
*.torchscript |
|||
darknet53.conv.74 |
|||
yolov3-tiny.conv.15 |
|||
|
|||
# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- |
|||
# Byte-compiled / optimized / DLL files |
|||
__pycache__/ |
|||
*.py[cod] |
|||
*$py.class |
|||
|
|||
# C extensions |
|||
*.so |
|||
|
|||
# Distribution / packaging |
|||
.Python |
|||
env/ |
|||
build/ |
|||
develop-eggs/ |
|||
dist/ |
|||
downloads/ |
|||
eggs/ |
|||
.eggs/ |
|||
lib/ |
|||
lib64/ |
|||
parts/ |
|||
sdist/ |
|||
var/ |
|||
wheels/ |
|||
*.egg-info/ |
|||
wandb/ |
|||
.installed.cfg |
|||
*.egg |
|||
|
|||
|
|||
# PyInstaller |
|||
# Usually these files are written by a python script from a template |
|||
# before PyInstaller builds the exe, so as to inject date/other infos into it. |
|||
*.manifest |
|||
*.spec |
|||
|
|||
# Installer logs |
|||
pip-log.txt |
|||
pip-delete-this-directory.txt |
|||
|
|||
# Unit test / coverage reports |
|||
htmlcov/ |
|||
.tox/ |
|||
.coverage |
|||
.coverage.* |
|||
.cache |
|||
nosetests.xml |
|||
coverage.xml |
|||
*.cover |
|||
.hypothesis/ |
|||
|
|||
# Translations |
|||
*.mo |
|||
*.pot |
|||
|
|||
# Django stuff: |
|||
*.log |
|||
local_settings.py |
|||
|
|||
# Flask stuff: |
|||
instance/ |
|||
.webassets-cache |
|||
|
|||
# Scrapy stuff: |
|||
.scrapy |
|||
|
|||
# Sphinx documentation |
|||
docs/_build/ |
|||
|
|||
# PyBuilder |
|||
target/ |
|||
|
|||
# Jupyter Notebook |
|||
.ipynb_checkpoints |
|||
|
|||
# pyenv |
|||
.python-version |
|||
|
|||
# celery beat schedule file |
|||
celerybeat-schedule |
|||
|
|||
# SageMath parsed files |
|||
*.sage.py |
|||
|
|||
# dotenv |
|||
.env |
|||
|
|||
# virtualenv |
|||
.venv* |
|||
venv*/ |
|||
ENV*/ |
|||
|
|||
# Spyder project settings |
|||
.spyderproject |
|||
.spyproject |
|||
|
|||
# Rope project settings |
|||
.ropeproject |
|||
|
|||
# mkdocs documentation |
|||
/site |
|||
|
|||
# mypy |
|||
.mypy_cache/ |
|||
|
|||
|
|||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- |
|||
|
|||
# General |
|||
.DS_Store |
|||
.AppleDouble |
|||
.LSOverride |
|||
|
|||
# Icon must end with two \r |
|||
Icon |
|||
Icon? |
|||
|
|||
# Thumbnails |
|||
._* |
|||
|
|||
# Files that might appear in the root of a volume |
|||
.DocumentRevisions-V100 |
|||
.fseventsd |
|||
.Spotlight-V100 |
|||
.TemporaryItems |
|||
.Trashes |
|||
.VolumeIcon.icns |
|||
.com.apple.timemachine.donotpresent |
|||
|
|||
# Directories potentially created on remote AFP share |
|||
.AppleDB |
|||
.AppleDesktop |
|||
Network Trash Folder |
|||
Temporary Items |
|||
.apdisk |
|||
|
|||
|
|||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore |
|||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm |
|||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 |
|||
|
|||
# User-specific stuff: |
|||
.idea/* |
|||
.idea/**/workspace.xml |
|||
.idea/**/tasks.xml |
|||
.idea/dictionaries |
|||
.html # Bokeh Plots |
|||
.pg # TensorFlow Frozen Graphs |
|||
.avi # videos |
|||
|
|||
# Sensitive or high-churn files: |
|||
.idea/**/dataSources/ |
|||
.idea/**/dataSources.ids |
|||
.idea/**/dataSources.local.xml |
|||
.idea/**/sqlDataSources.xml |
|||
.idea/**/dynamic.xml |
|||
.idea/**/uiDesigner.xml |
|||
|
|||
# Gradle: |
|||
.idea/**/gradle.xml |
|||
.idea/**/libraries |
|||
|
|||
# CMake |
|||
cmake-build-debug/ |
|||
cmake-build-release/ |
|||
|
|||
# Mongo Explorer plugin: |
|||
.idea/**/mongoSettings.xml |
|||
|
|||
## File-based project format: |
|||
*.iws |
|||
|
|||
## Plugin-specific files: |
|||
|
|||
# IntelliJ |
|||
out/ |
|||
|
|||
# mpeltonen/sbt-idea plugin |
|||
.idea_modules/ |
|||
|
|||
# JIRA plugin |
|||
atlassian-ide-plugin.xml |
|||
|
|||
# Cursive Clojure plugin |
|||
.idea/replstate.xml |
|||
|
|||
# Crashlytics plugin (for Android Studio and IntelliJ) |
|||
com_crashlytics_export_strings.xml |
|||
crashlytics.properties |
|||
crashlytics-build.properties |
|||
fabric.properties |
Binary file not shown.
@ -0,0 +1,55 @@ |
|||
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch |
|||
FROM nvcr.io/nvidia/pytorch:20.12-py3 |
|||
|
|||
# Install linux packages |
|||
RUN apt update && apt install -y screen libgl1-mesa-glx |
|||
|
|||
# Install python dependencies |
|||
RUN pip install --upgrade pip |
|||
COPY requirements.txt . |
|||
RUN pip install -r requirements.txt |
|||
RUN pip install gsutil |
|||
|
|||
# Create working directory |
|||
RUN mkdir -p /usr/src/app |
|||
WORKDIR /usr/src/app |
|||
|
|||
# Copy contents |
|||
COPY . /usr/src/app |
|||
|
|||
# Copy weights |
|||
#RUN python3 -c "from models import *; \ |
|||
#attempt_download('weights/yolov5s.pt'); \ |
|||
#attempt_download('weights/yolov5m.pt'); \ |
|||
#attempt_download('weights/yolov5l.pt')" |
|||
|
|||
|
|||
# --------------------------------------------------- Extras Below --------------------------------------------------- |
|||
|
|||
# Build and Push |
|||
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t |
|||
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done |
|||
|
|||
# Pull and Run |
|||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t |
|||
|
|||
# Pull and Run with local directory access |
|||
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t |
|||
|
|||
# Kill all |
|||
# sudo docker kill $(sudo docker ps -q) |
|||
|
|||
# Kill all image-based |
|||
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest) |
|||
|
|||
# Bash into running container |
|||
# sudo docker container exec -it ba65811811ab bash |
|||
|
|||
# Bash into stopped container |
|||
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume |
|||
|
|||
# Send weights to GCP |
|||
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt |
|||
|
|||
# Clean up |
|||
# docker system prune -a --volumes |
@ -0,0 +1,674 @@ |
|||
GNU GENERAL PUBLIC LICENSE |
|||
Version 3, 29 June 2007 |
|||
|
|||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> |
|||
Everyone is permitted to copy and distribute verbatim copies |
|||
of this license document, but changing it is not allowed. |
|||
|
|||
Preamble |
|||
|
|||
The GNU General Public License is a free, copyleft license for |
|||
software and other kinds of works. |
|||
|
|||
The licenses for most software and other practical works are designed |
|||
to take away your freedom to share and change the works. By contrast, |
|||
the GNU General Public License is intended to guarantee your freedom to |
|||
share and change all versions of a program--to make sure it remains free |
|||
software for all its users. We, the Free Software Foundation, use the |
|||
GNU General Public License for most of our software; it applies also to |
|||
any other work released this way by its authors. You can apply it to |
|||
your programs, too. |
|||
|
|||
When we speak of free software, we are referring to freedom, not |
|||
price. Our General Public Licenses are designed to make sure that you |
|||
have the freedom to distribute copies of free software (and charge for |
|||
them if you wish), that you receive source code or can get it if you |
|||
want it, that you can change the software or use pieces of it in new |
|||
free programs, and that you know you can do these things. |
|||
|
|||
To protect your rights, we need to prevent others from denying you |
|||
these rights or asking you to surrender the rights. Therefore, you have |
|||
certain responsibilities if you distribute copies of the software, or if |
|||
you modify it: responsibilities to respect the freedom of others. |
|||
|
|||
For example, if you distribute copies of such a program, whether |
|||
gratis or for a fee, you must pass on to the recipients the same |
|||
freedoms that you received. You must make sure that they, too, receive |
|||
or can get the source code. And you must show them these terms so they |
|||
know their rights. |
|||
|
|||
Developers that use the GNU GPL protect your rights with two steps: |
|||
(1) assert copyright on the software, and (2) offer you this License |
|||
giving you legal permission to copy, distribute and/or modify it. |
|||
|
|||
For the developers' and authors' protection, the GPL clearly explains |
|||
that there is no warranty for this free software. For both users' and |
|||
authors' sake, the GPL requires that modified versions be marked as |
|||
changed, so that their problems will not be attributed erroneously to |
|||
authors of previous versions. |
|||
|
|||
Some devices are designed to deny users access to install or run |
|||
modified versions of the software inside them, although the manufacturer |
|||
can do so. This is fundamentally incompatible with the aim of |
|||
protecting users' freedom to change the software. The systematic |
|||
pattern of such abuse occurs in the area of products for individuals to |
|||
use, which is precisely where it is most unacceptable. Therefore, we |
|||
have designed this version of the GPL to prohibit the practice for those |
|||
products. If such problems arise substantially in other domains, we |
|||
stand ready to extend this provision to those domains in future versions |
|||
of the GPL, as needed to protect the freedom of users. |
|||
|
|||
Finally, every program is threatened constantly by software patents. |
|||
States should not allow patents to restrict development and use of |
|||
software on general-purpose computers, but in those that do, we wish to |
|||
avoid the special danger that patents applied to a free program could |
|||
make it effectively proprietary. To prevent this, the GPL assures that |
|||
patents cannot be used to render the program non-free. |
|||
|
|||
The precise terms and conditions for copying, distribution and |
|||
modification follow. |
|||
|
|||
TERMS AND CONDITIONS |
|||
|
|||
0. Definitions. |
|||
|
|||
"This License" refers to version 3 of the GNU General Public License. |
|||
|
|||
"Copyright" also means copyright-like laws that apply to other kinds of |
|||
works, such as semiconductor masks. |
|||
|
|||
"The Program" refers to any copyrightable work licensed under this |
|||
License. Each licensee is addressed as "you". "Licensees" and |
|||
"recipients" may be individuals or organizations. |
|||
|
|||
To "modify" a work means to copy from or adapt all or part of the work |
|||
in a fashion requiring copyright permission, other than the making of an |
|||
exact copy. The resulting work is called a "modified version" of the |
|||
earlier work or a work "based on" the earlier work. |
|||
|
|||
A "covered work" means either the unmodified Program or a work based |
|||
on the Program. |
|||
|
|||
To "propagate" a work means to do anything with it that, without |
|||
permission, would make you directly or secondarily liable for |
|||
infringement under applicable copyright law, except executing it on a |
|||
computer or modifying a private copy. Propagation includes copying, |
|||
distribution (with or without modification), making available to the |
|||
public, and in some countries other activities as well. |
|||
|
|||
To "convey" a work means any kind of propagation that enables other |
|||
parties to make or receive copies. Mere interaction with a user through |
|||
a computer network, with no transfer of a copy, is not conveying. |
|||
|
|||
An interactive user interface displays "Appropriate Legal Notices" |
|||
to the extent that it includes a convenient and prominently visible |
|||
feature that (1) displays an appropriate copyright notice, and (2) |
|||
tells the user that there is no warranty for the work (except to the |
|||
extent that warranties are provided), that licensees may convey the |
|||
work under this License, and how to view a copy of this License. If |
|||
the interface presents a list of user commands or options, such as a |
|||
menu, a prominent item in the list meets this criterion. |
|||
|
|||
1. Source Code. |
|||
|
|||
The "source code" for a work means the preferred form of the work |
|||
for making modifications to it. "Object code" means any non-source |
|||
form of a work. |
|||
|
|||
A "Standard Interface" means an interface that either is an official |
|||
standard defined by a recognized standards body, or, in the case of |
|||
interfaces specified for a particular programming language, one that |
|||
is widely used among developers working in that language. |
|||
|
|||
The "System Libraries" of an executable work include anything, other |
|||
than the work as a whole, that (a) is included in the normal form of |
|||
packaging a Major Component, but which is not part of that Major |
|||
Component, and (b) serves only to enable use of the work with that |
|||
Major Component, or to implement a Standard Interface for which an |
|||
implementation is available to the public in source code form. A |
|||
"Major Component", in this context, means a major essential component |
|||
(kernel, window system, and so on) of the specific operating system |
|||
(if any) on which the executable work runs, or a compiler used to |
|||
produce the work, or an object code interpreter used to run it. |
|||
|
|||
The "Corresponding Source" for a work in object code form means all |
|||
the source code needed to generate, install, and (for an executable |
|||
work) run the object code and to modify the work, including scripts to |
|||
control those activities. However, it does not include the work's |
|||
System Libraries, or general-purpose tools or generally available free |
|||
programs which are used unmodified in performing those activities but |
|||
which are not part of the work. For example, Corresponding Source |
|||
includes interface definition files associated with source files for |
|||
the work, and the source code for shared libraries and dynamically |
|||
linked subprograms that the work is specifically designed to require, |
|||
such as by intimate data communication or control flow between those |
|||
subprograms and other parts of the work. |
|||
|
|||
The Corresponding Source need not include anything that users |
|||
can regenerate automatically from other parts of the Corresponding |
|||
Source. |
|||
|
|||
The Corresponding Source for a work in source code form is that |
|||
same work. |
|||
|
|||
2. Basic Permissions. |
|||
|
|||
All rights granted under this License are granted for the term of |
|||
copyright on the Program, and are irrevocable provided the stated |
|||
conditions are met. This License explicitly affirms your unlimited |
|||
permission to run the unmodified Program. The output from running a |
|||
covered work is covered by this License only if the output, given its |
|||
content, constitutes a covered work. This License acknowledges your |
|||
rights of fair use or other equivalent, as provided by copyright law. |
|||
|
|||
You may make, run and propagate covered works that you do not |
|||
convey, without conditions so long as your license otherwise remains |
|||
in force. You may convey covered works to others for the sole purpose |
|||
of having them make modifications exclusively for you, or provide you |
|||
with facilities for running those works, provided that you comply with |
|||
the terms of this License in conveying all material for which you do |
|||
not control copyright. Those thus making or running the covered works |
|||
for you must do so exclusively on your behalf, under your direction |
|||
and control, on terms that prohibit them from making any copies of |
|||
your copyrighted material outside their relationship with you. |
|||
|
|||
Conveying under any other circumstances is permitted solely under |
|||
the conditions stated below. Sublicensing is not allowed; section 10 |
|||
makes it unnecessary. |
|||
|
|||
3. Protecting Users' Legal Rights From Anti-Circumvention Law. |
|||
|
|||
No covered work shall be deemed part of an effective technological |
|||
measure under any applicable law fulfilling obligations under article |
|||
11 of the WIPO copyright treaty adopted on 20 December 1996, or |
|||
similar laws prohibiting or restricting circumvention of such |
|||
measures. |
|||
|
|||
When you convey a covered work, you waive any legal power to forbid |
|||
circumvention of technological measures to the extent such circumvention |
|||
is effected by exercising rights under this License with respect to |
|||
the covered work, and you disclaim any intention to limit operation or |
|||
modification of the work as a means of enforcing, against the work's |
|||
users, your or third parties' legal rights to forbid circumvention of |
|||
technological measures. |
|||
|
|||
4. Conveying Verbatim Copies. |
|||
|
|||
You may convey verbatim copies of the Program's source code as you |
|||
receive it, in any medium, provided that you conspicuously and |
|||
appropriately publish on each copy an appropriate copyright notice; |
|||
keep intact all notices stating that this License and any |
|||
non-permissive terms added in accord with section 7 apply to the code; |
|||
keep intact all notices of the absence of any warranty; and give all |
|||
recipients a copy of this License along with the Program. |
|||
|
|||
You may charge any price or no price for each copy that you convey, |
|||
and you may offer support or warranty protection for a fee. |
|||
|
|||
5. Conveying Modified Source Versions. |
|||
|
|||
You may convey a work based on the Program, or the modifications to |
|||
produce it from the Program, in the form of source code under the |
|||
terms of section 4, provided that you also meet all of these conditions: |
|||
|
|||
a) The work must carry prominent notices stating that you modified |
|||
it, and giving a relevant date. |
|||
|
|||
b) The work must carry prominent notices stating that it is |
|||
released under this License and any conditions added under section |
|||
7. This requirement modifies the requirement in section 4 to |
|||
"keep intact all notices". |
|||
|
|||
c) You must license the entire work, as a whole, under this |
|||
License to anyone who comes into possession of a copy. This |
|||
License will therefore apply, along with any applicable section 7 |
|||
additional terms, to the whole of the work, and all its parts, |
|||
regardless of how they are packaged. This License gives no |
|||
permission to license the work in any other way, but it does not |
|||
invalidate such permission if you have separately received it. |
|||
|
|||
d) If the work has interactive user interfaces, each must display |
|||
Appropriate Legal Notices; however, if the Program has interactive |
|||
interfaces that do not display Appropriate Legal Notices, your |
|||
work need not make them do so. |
|||
|
|||
A compilation of a covered work with other separate and independent |
|||
works, which are not by their nature extensions of the covered work, |
|||
and which are not combined with it such as to form a larger program, |
|||
in or on a volume of a storage or distribution medium, is called an |
|||
"aggregate" if the compilation and its resulting copyright are not |
|||
used to limit the access or legal rights of the compilation's users |
|||
beyond what the individual works permit. Inclusion of a covered work |
|||
in an aggregate does not cause this License to apply to the other |
|||
parts of the aggregate. |
|||
|
|||
6. Conveying Non-Source Forms. |
|||
|
|||
You may convey a covered work in object code form under the terms |
|||
of sections 4 and 5, provided that you also convey the |
|||
machine-readable Corresponding Source under the terms of this License, |
|||
in one of these ways: |
|||
|
|||
a) Convey the object code in, or embodied in, a physical product |
|||
(including a physical distribution medium), accompanied by the |
|||
Corresponding Source fixed on a durable physical medium |
|||
customarily used for software interchange. |
|||
|
|||
b) Convey the object code in, or embodied in, a physical product |
|||
(including a physical distribution medium), accompanied by a |
|||
written offer, valid for at least three years and valid for as |
|||
long as you offer spare parts or customer support for that product |
|||
model, to give anyone who possesses the object code either (1) a |
|||
copy of the Corresponding Source for all the software in the |
|||
product that is covered by this License, on a durable physical |
|||
medium customarily used for software interchange, for a price no |
|||
more than your reasonable cost of physically performing this |
|||
conveying of source, or (2) access to copy the |
|||
Corresponding Source from a network server at no charge. |
|||
|
|||
c) Convey individual copies of the object code with a copy of the |
|||
written offer to provide the Corresponding Source. This |
|||
alternative is allowed only occasionally and noncommercially, and |
|||
only if you received the object code with such an offer, in accord |
|||
with subsection 6b. |
|||
|
|||
d) Convey the object code by offering access from a designated |
|||
place (gratis or for a charge), and offer equivalent access to the |
|||
Corresponding Source in the same way through the same place at no |
|||
further charge. You need not require recipients to copy the |
|||
Corresponding Source along with the object code. If the place to |
|||
copy the object code is a network server, the Corresponding Source |
|||
may be on a different server (operated by you or a third party) |
|||
that supports equivalent copying facilities, provided you maintain |
|||
clear directions next to the object code saying where to find the |
|||
Corresponding Source. Regardless of what server hosts the |
|||
Corresponding Source, you remain obligated to ensure that it is |
|||
available for as long as needed to satisfy these requirements. |
|||
|
|||
e) Convey the object code using peer-to-peer transmission, provided |
|||
you inform other peers where the object code and Corresponding |
|||
Source of the work are being offered to the general public at no |
|||
charge under subsection 6d. |
|||
|
|||
A separable portion of the object code, whose source code is excluded |
|||
from the Corresponding Source as a System Library, need not be |
|||
included in conveying the object code work. |
|||
|
|||
A "User Product" is either (1) a "consumer product", which means any |
|||
tangible personal property which is normally used for personal, family, |
|||
or household purposes, or (2) anything designed or sold for incorporation |
|||
into a dwelling. In determining whether a product is a consumer product, |
|||
doubtful cases shall be resolved in favor of coverage. For a particular |
|||
product received by a particular user, "normally used" refers to a |
|||
typical or common use of that class of product, regardless of the status |
|||
of the particular user or of the way in which the particular user |
|||
actually uses, or expects or is expected to use, the product. A product |
|||
is a consumer product regardless of whether the product has substantial |
|||
commercial, industrial or non-consumer uses, unless such uses represent |
|||
the only significant mode of use of the product. |
|||
|
|||
"Installation Information" for a User Product means any methods, |
|||
procedures, authorization keys, or other information required to install |
|||
and execute modified versions of a covered work in that User Product from |
|||
a modified version of its Corresponding Source. The information must |
|||
suffice to ensure that the continued functioning of the modified object |
|||
code is in no case prevented or interfered with solely because |
|||
modification has been made. |
|||
|
|||
If you convey an object code work under this section in, or with, or |
|||
specifically for use in, a User Product, and the conveying occurs as |
|||
part of a transaction in which the right of possession and use of the |
|||
User Product is transferred to the recipient in perpetuity or for a |
|||
fixed term (regardless of how the transaction is characterized), the |
|||
Corresponding Source conveyed under this section must be accompanied |
|||
by the Installation Information. But this requirement does not apply |
|||
if neither you nor any third party retains the ability to install |
|||
modified object code on the User Product (for example, the work has |
|||
been installed in ROM). |
|||
|
|||
The requirement to provide Installation Information does not include a |
|||
requirement to continue to provide support service, warranty, or updates |
|||
for a work that has been modified or installed by the recipient, or for |
|||
the User Product in which it has been modified or installed. Access to a |
|||
network may be denied when the modification itself materially and |
|||
adversely affects the operation of the network or violates the rules and |
|||
protocols for communication across the network. |
|||
|
|||
Corresponding Source conveyed, and Installation Information provided, |
|||
in accord with this section must be in a format that is publicly |
|||
documented (and with an implementation available to the public in |
|||
source code form), and must require no special password or key for |
|||
unpacking, reading or copying. |
|||
|
|||
7. Additional Terms. |
|||
|
|||
"Additional permissions" are terms that supplement the terms of this |
|||
License by making exceptions from one or more of its conditions. |
|||
Additional permissions that are applicable to the entire Program shall |
|||
be treated as though they were included in this License, to the extent |
|||
that they are valid under applicable law. If additional permissions |
|||
apply only to part of the Program, that part may be used separately |
|||
under those permissions, but the entire Program remains governed by |
|||
this License without regard to the additional permissions. |
|||
|
|||
When you convey a copy of a covered work, you may at your option |
|||
remove any additional permissions from that copy, or from any part of |
|||
it. (Additional permissions may be written to require their own |
|||
removal in certain cases when you modify the work.) You may place |
|||
additional permissions on material, added by you to a covered work, |
|||
for which you have or can give appropriate copyright permission. |
|||
|
|||
Notwithstanding any other provision of this License, for material you |
|||
add to a covered work, you may (if authorized by the copyright holders of |
|||
that material) supplement the terms of this License with terms: |
|||
|
|||
a) Disclaiming warranty or limiting liability differently from the |
|||
terms of sections 15 and 16 of this License; or |
|||
|
|||
b) Requiring preservation of specified reasonable legal notices or |
|||
author attributions in that material or in the Appropriate Legal |
|||
Notices displayed by works containing it; or |
|||
|
|||
c) Prohibiting misrepresentation of the origin of that material, or |
|||
requiring that modified versions of such material be marked in |
|||
reasonable ways as different from the original version; or |
|||
|
|||
d) Limiting the use for publicity purposes of names of licensors or |
|||
authors of the material; or |
|||
|
|||
e) Declining to grant rights under trademark law for use of some |
|||
trade names, trademarks, or service marks; or |
|||
|
|||
f) Requiring indemnification of licensors and authors of that |
|||
material by anyone who conveys the material (or modified versions of |
|||
it) with contractual assumptions of liability to the recipient, for |
|||
any liability that these contractual assumptions directly impose on |
|||
those licensors and authors. |
|||
|
|||
All other non-permissive additional terms are considered "further |
|||
restrictions" within the meaning of section 10. If the Program as you |
|||
received it, or any part of it, contains a notice stating that it is |
|||
governed by this License along with a term that is a further |
|||
restriction, you may remove that term. If a license document contains |
|||
a further restriction but permits relicensing or conveying under this |
|||
License, you may add to a covered work material governed by the terms |
|||
of that license document, provided that the further restriction does |
|||
not survive such relicensing or conveying. |
|||
|
|||
If you add terms to a covered work in accord with this section, you |
|||
must place, in the relevant source files, a statement of the |
|||
additional terms that apply to those files, or a notice indicating |
|||
where to find the applicable terms. |
|||
|
|||
Additional terms, permissive or non-permissive, may be stated in the |
|||
form of a separately written license, or stated as exceptions; |
|||
the above requirements apply either way. |
|||
|
|||
8. Termination. |
|||
|
|||
You may not propagate or modify a covered work except as expressly |
|||
provided under this License. Any attempt otherwise to propagate or |
|||
modify it is void, and will automatically terminate your rights under |
|||
this License (including any patent licenses granted under the third |
|||
paragraph of section 11). |
|||
|
|||
However, if you cease all violation of this License, then your |
|||
license from a particular copyright holder is reinstated (a) |
|||
provisionally, unless and until the copyright holder explicitly and |
|||
finally terminates your license, and (b) permanently, if the copyright |
|||
holder fails to notify you of the violation by some reasonable means |
|||
prior to 60 days after the cessation. |
|||
|
|||
Moreover, your license from a particular copyright holder is |
|||
reinstated permanently if the copyright holder notifies you of the |
|||
violation by some reasonable means, this is the first time you have |
|||
received notice of violation of this License (for any work) from that |
|||
copyright holder, and you cure the violation prior to 30 days after |
|||
your receipt of the notice. |
|||
|
|||
Termination of your rights under this section does not terminate the |
|||
licenses of parties who have received copies or rights from you under |
|||
this License. If your rights have been terminated and not permanently |
|||
reinstated, you do not qualify to receive new licenses for the same |
|||
material under section 10. |
|||
|
|||
9. Acceptance Not Required for Having Copies. |
|||
|
|||
You are not required to accept this License in order to receive or |
|||
run a copy of the Program. Ancillary propagation of a covered work |
|||
occurring solely as a consequence of using peer-to-peer transmission |
|||
to receive a copy likewise does not require acceptance. However, |
|||
nothing other than this License grants you permission to propagate or |
|||
modify any covered work. These actions infringe copyright if you do |
|||
not accept this License. Therefore, by modifying or propagating a |
|||
covered work, you indicate your acceptance of this License to do so. |
|||
|
|||
10. Automatic Licensing of Downstream Recipients. |
|||
|
|||
Each time you convey a covered work, the recipient automatically |
|||
receives a license from the original licensors, to run, modify and |
|||
propagate that work, subject to this License. You are not responsible |
|||
for enforcing compliance by third parties with this License. |
|||
|
|||
An "entity transaction" is a transaction transferring control of an |
|||
organization, or substantially all assets of one, or subdividing an |
|||
organization, or merging organizations. If propagation of a covered |
|||
work results from an entity transaction, each party to that |
|||
transaction who receives a copy of the work also receives whatever |
|||
licenses to the work the party's predecessor in interest had or could |
|||
give under the previous paragraph, plus a right to possession of the |
|||
Corresponding Source of the work from the predecessor in interest, if |
|||
the predecessor has it or can get it with reasonable efforts. |
|||
|
|||
You may not impose any further restrictions on the exercise of the |
|||
rights granted or affirmed under this License. For example, you may |
|||
not impose a license fee, royalty, or other charge for exercise of |
|||
rights granted under this License, and you may not initiate litigation |
|||
(including a cross-claim or counterclaim in a lawsuit) alleging that |
|||
any patent claim is infringed by making, using, selling, offering for |
|||
sale, or importing the Program or any portion of it. |
|||
|
|||
11. Patents. |
|||
|
|||
A "contributor" is a copyright holder who authorizes use under this |
|||
License of the Program or a work on which the Program is based. The |
|||
work thus licensed is called the contributor's "contributor version". |
|||
|
|||
A contributor's "essential patent claims" are all patent claims |
|||
owned or controlled by the contributor, whether already acquired or |
|||
hereafter acquired, that would be infringed by some manner, permitted |
|||
by this License, of making, using, or selling its contributor version, |
|||
but do not include claims that would be infringed only as a |
|||
consequence of further modification of the contributor version. For |
|||
purposes of this definition, "control" includes the right to grant |
|||
patent sublicenses in a manner consistent with the requirements of |
|||
this License. |
|||
|
|||
Each contributor grants you a non-exclusive, worldwide, royalty-free |
|||
patent license under the contributor's essential patent claims, to |
|||
make, use, sell, offer for sale, import and otherwise run, modify and |
|||
propagate the contents of its contributor version. |
|||
|
|||
In the following three paragraphs, a "patent license" is any express |
|||
agreement or commitment, however denominated, not to enforce a patent |
|||
(such as an express permission to practice a patent or covenant not to |
|||
sue for patent infringement). To "grant" such a patent license to a |
|||
party means to make such an agreement or commitment not to enforce a |
|||
patent against the party. |
|||
|
|||
If you convey a covered work, knowingly relying on a patent license, |
|||
and the Corresponding Source of the work is not available for anyone |
|||
to copy, free of charge and under the terms of this License, through a |
|||
publicly available network server or other readily accessible means, |
|||
then you must either (1) cause the Corresponding Source to be so |
|||
available, or (2) arrange to deprive yourself of the benefit of the |
|||
patent license for this particular work, or (3) arrange, in a manner |
|||
consistent with the requirements of this License, to extend the patent |
|||
license to downstream recipients. "Knowingly relying" means you have |
|||
actual knowledge that, but for the patent license, your conveying the |
|||
covered work in a country, or your recipient's use of the covered work |
|||
in a country, would infringe one or more identifiable patents in that |
|||
country that you have reason to believe are valid. |
|||
|
|||
If, pursuant to or in connection with a single transaction or |
|||
arrangement, you convey, or propagate by procuring conveyance of, a |
|||
covered work, and grant a patent license to some of the parties |
|||
receiving the covered work authorizing them to use, propagate, modify |
|||
or convey a specific copy of the covered work, then the patent license |
|||
you grant is automatically extended to all recipients of the covered |
|||
work and works based on it. |
|||
|
|||
A patent license is "discriminatory" if it does not include within |
|||
the scope of its coverage, prohibits the exercise of, or is |
|||
conditioned on the non-exercise of one or more of the rights that are |
|||
specifically granted under this License. You may not convey a covered |
|||
work if you are a party to an arrangement with a third party that is |
|||
in the business of distributing software, under which you make payment |
|||
to the third party based on the extent of your activity of conveying |
|||
the work, and under which the third party grants, to any of the |
|||
parties who would receive the covered work from you, a discriminatory |
|||
patent license (a) in connection with copies of the covered work |
|||
conveyed by you (or copies made from those copies), or (b) primarily |
|||
for and in connection with specific products or compilations that |
|||
contain the covered work, unless you entered into that arrangement, |
|||
or that patent license was granted, prior to 28 March 2007. |
|||
|
|||
Nothing in this License shall be construed as excluding or limiting |
|||
any implied license or other defenses to infringement that may |
|||
otherwise be available to you under applicable patent law. |
|||
|
|||
12. No Surrender of Others' Freedom. |
|||
|
|||
If conditions are imposed on you (whether by court order, agreement or |
|||
otherwise) that contradict the conditions of this License, they do not |
|||
excuse you from the conditions of this License. If you cannot convey a |
|||
covered work so as to satisfy simultaneously your obligations under this |
|||
License and any other pertinent obligations, then as a consequence you may |
|||
not convey it at all. For example, if you agree to terms that obligate you |
|||
to collect a royalty for further conveying from those to whom you convey |
|||
the Program, the only way you could satisfy both those terms and this |
|||
License would be to refrain entirely from conveying the Program. |
|||
|
|||
13. Use with the GNU Affero General Public License. |
|||
|
|||
Notwithstanding any other provision of this License, you have |
|||
permission to link or combine any covered work with a work licensed |
|||
under version 3 of the GNU Affero General Public License into a single |
|||
combined work, and to convey the resulting work. The terms of this |
|||
License will continue to apply to the part which is the covered work, |
|||
but the special requirements of the GNU Affero General Public License, |
|||
section 13, concerning interaction through a network will apply to the |
|||
combination as such. |
|||
|
|||
14. Revised Versions of this License. |
|||
|
|||
The Free Software Foundation may publish revised and/or new versions of |
|||
the GNU General Public License from time to time. Such new versions will |
|||
be similar in spirit to the present version, but may differ in detail to |
|||
address new problems or concerns. |
|||
|
|||
Each version is given a distinguishing version number. If the |
|||
Program specifies that a certain numbered version of the GNU General |
|||
Public License "or any later version" applies to it, you have the |
|||
option of following the terms and conditions either of that numbered |
|||
version or of any later version published by the Free Software |
|||
Foundation. If the Program does not specify a version number of the |
|||
GNU General Public License, you may choose any version ever published |
|||
by the Free Software Foundation. |
|||
|
|||
If the Program specifies that a proxy can decide which future |
|||
versions of the GNU General Public License can be used, that proxy's |
|||
public statement of acceptance of a version permanently authorizes you |
|||
to choose that version for the Program. |
|||
|
|||
Later license versions may give you additional or different |
|||
permissions. However, no additional obligations are imposed on any |
|||
author or copyright holder as a result of your choosing to follow a |
|||
later version. |
|||
|
|||
15. Disclaimer of Warranty. |
|||
|
|||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY |
|||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT |
|||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY |
|||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, |
|||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM |
|||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF |
|||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. |
|||
|
|||
16. Limitation of Liability. |
|||
|
|||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING |
|||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS |
|||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY |
|||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE |
|||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF |
|||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD |
|||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), |
|||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF |
|||
SUCH DAMAGES. |
|||
|
|||
17. Interpretation of Sections 15 and 16. |
|||
|
|||
If the disclaimer of warranty and limitation of liability provided |
|||
above cannot be given local legal effect according to their terms, |
|||
reviewing courts shall apply local law that most closely approximates |
|||
an absolute waiver of all civil liability in connection with the |
|||
Program, unless a warranty or assumption of liability accompanies a |
|||
copy of the Program in return for a fee. |
|||
|
|||
END OF TERMS AND CONDITIONS |
|||
|
|||
How to Apply These Terms to Your New Programs |
|||
|
|||
If you develop a new program, and you want it to be of the greatest |
|||
possible use to the public, the best way to achieve this is to make it |
|||
free software which everyone can redistribute and change under these terms. |
|||
|
|||
To do so, attach the following notices to the program. It is safest |
|||
to attach them to the start of each source file to most effectively |
|||
state the exclusion of warranty; and each file should have at least |
|||
the "copyright" line and a pointer to where the full notice is found. |
|||
|
|||
<one line to give the program's name and a brief idea of what it does.> |
|||
Copyright (C) <year> <name of author> |
|||
|
|||
This program is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
This program is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|||
|
|||
Also add information on how to contact you by electronic and paper mail. |
|||
|
|||
If the program does terminal interaction, make it output a short |
|||
notice like this when it starts in an interactive mode: |
|||
|
|||
<program> Copyright (C) <year> <name of author> |
|||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. |
|||
This is free software, and you are welcome to redistribute it |
|||
under certain conditions; type `show c' for details. |
|||
|
|||
The hypothetical commands `show w' and `show c' should show the appropriate |
|||
parts of the General Public License. Of course, your program's commands |
|||
might be different; for a GUI interface, you would use an "about box". |
|||
|
|||
You should also get your employer (if you work as a programmer) or school, |
|||
if any, to sign a "copyright disclaimer" for the program, if necessary. |
|||
For more information on this, and how to apply and follow the GNU GPL, see |
|||
<http://www.gnu.org/licenses/>. |
|||
|
|||
The GNU General Public License does not permit incorporating your program |
|||
into proprietary programs. If your program is a subroutine library, you |
|||
may consider it more useful to permit linking proprietary applications with |
|||
the library. If this is what you want to do, use the GNU Lesser General |
|||
Public License instead of this License. But first, please read |
|||
<http://www.gnu.org/philosophy/why-not-lgpl.html>. |
@ -0,0 +1,155 @@ |
|||
<a href="https://apps.apple.com/app/id1452689527" target="_blank"> |
|||
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a> |
|||
  |
|||
|
|||
 |
|||
|
|||
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk. |
|||
|
|||
<img src="https://user-images.githubusercontent.com/26833433/103594689-455e0e00-4eae-11eb-9cdf-7d753e2ceeeb.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. |
|||
|
|||
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration. |
|||
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP. |
|||
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP. |
|||
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972). |
|||
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145). |
|||
|
|||
|
|||
## Pretrained Checkpoints |
|||
|
|||
| Model | size | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>V100</sub> | FPS<sub>V100</sub> || params | GFLOPS | |
|||
|---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: | |
|||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0 |
|||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3 |
|||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4 |
|||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8 |
|||
| | | | | | | || | |
|||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3 |
|||
|
|||
<!--- |
|||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |640 |49.0 |49.0 |67.4 |4.1ms |244 ||77.2M |117.7 |
|||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |1280 |53.0 |53.0 |70.8 |12.3ms |81 ||77.2M |117.7 |
|||
---> |
|||
|
|||
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. |
|||
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` |
|||
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` |
|||
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). |
|||
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment` |
|||
|
|||
|
|||
## Requirements |
|||
|
|||
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run: |
|||
```bash |
|||
$ pip install -r requirements.txt |
|||
``` |
|||
|
|||
|
|||
## Tutorials |
|||
|
|||
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED |
|||
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW |
|||
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) |
|||
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW |
|||
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251) |
|||
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) |
|||
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) |
|||
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) |
|||
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) |
|||
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW |
|||
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) |
|||
|
|||
|
|||
## Environments |
|||
|
|||
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): |
|||
|
|||
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> |
|||
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5) |
|||
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) |
|||
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)  |
|||
|
|||
|
|||
## Inference |
|||
|
|||
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. |
|||
```bash |
|||
$ python detect.py --source 0 # webcam |
|||
file.jpg # image |
|||
file.mp4 # video |
|||
path/ # directory |
|||
path/*.jpg # glob |
|||
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream |
|||
rtmp://192.168.1.105/live/test # rtmp stream |
|||
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream |
|||
``` |
|||
|
|||
To run inference on example images in `data/images`: |
|||
```bash |
|||
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25 |
|||
|
|||
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt']) |
|||
Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB) |
|||
|
|||
Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s] |
|||
|
|||
Fusing layers... |
|||
Model Summary: 232 layers, 7459581 parameters, 0 gradients |
|||
image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s) |
|||
image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s) |
|||
Results saved to runs/detect/exp |
|||
Done. (0.113s) |
|||
``` |
|||
<img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500"> |
|||
|
|||
### PyTorch Hub |
|||
|
|||
To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36): |
|||
```python |
|||
import torch |
|||
from PIL import Image |
|||
|
|||
# Model |
|||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) |
|||
|
|||
# Images |
|||
img1 = Image.open('zidane.jpg') |
|||
img2 = Image.open('bus.jpg') |
|||
imgs = [img1, img2] # batched list of images |
|||
|
|||
# Inference |
|||
result = model(imgs) |
|||
``` |
|||
|
|||
|
|||
## Training |
|||
|
|||
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). |
|||
```bash |
|||
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 |
|||
yolov5m 40 |
|||
yolov5l 24 |
|||
yolov5x 16 |
|||
``` |
|||
<img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900"> |
|||
|
|||
|
|||
## Citation |
|||
|
|||
[](https://zenodo.org/badge/latestdoi/264818686) |
|||
|
|||
|
|||
## About Us |
|||
|
|||
Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including: |
|||
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.** |
|||
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.** |
|||
- **Custom data training**, hyperparameter evolution, and model exportation to any destination. |
|||
|
|||
For business inquiries and professional support requests please visit us at https://www.ultralytics.com. |
|||
|
|||
|
|||
## Contact |
|||
|
|||
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com. |
@ -0,0 +1,173 @@ |
|||
import argparse |
|||
import time |
|||
from pathlib import Path |
|||
|
|||
import cv2 |
|||
import torch |
|||
import torch.backends.cudnn as cudnn |
|||
from numpy import random |
|||
|
|||
from models.experimental import attempt_load |
|||
from utils.datasets import LoadStreams, LoadImages |
|||
from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, \ |
|||
xyxy2xywh, strip_optimizer, set_logging, increment_path |
|||
from utils.plots import plot_one_box |
|||
from utils.torch_utils import select_device, load_classifier, time_synchronized |
|||
|
|||
|
|||
def detect(save_img=False): |
|||
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size |
|||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( |
|||
('rtsp://', 'rtmp://', 'http://')) |
|||
|
|||
# Directories |
|||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run |
|||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|||
|
|||
# Initialize |
|||
set_logging() |
|||
device = select_device(opt.device) |
|||
half = device.type != 'cpu' # half precision only supported on CUDA |
|||
|
|||
# Load model |
|||
model = attempt_load(weights, map_location=device) # load FP32 model |
|||
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size |
|||
if half: |
|||
model.half() # to FP16 |
|||
|
|||
# Second-stage classifier |
|||
classify = False |
|||
if classify: |
|||
modelc = load_classifier(name='resnet101', n=2) # initialize |
|||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() |
|||
|
|||
# Set Dataloader |
|||
vid_path, vid_writer = None, None |
|||
if webcam: |
|||
view_img = True |
|||
cudnn.benchmark = True # set True to speed up constant image size inference |
|||
dataset = LoadStreams(source, img_size=imgsz) |
|||
else: |
|||
save_img = True |
|||
dataset = LoadImages(source, img_size=imgsz) |
|||
|
|||
# Get names and colors |
|||
names = model.module.names if hasattr(model, 'module') else model.names |
|||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] |
|||
|
|||
# Run inference |
|||
t0 = time.time() |
|||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img |
|||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once |
|||
for path, img, im0s, vid_cap in dataset: |
|||
img = torch.from_numpy(img).to(device) |
|||
img = img.half() if half else img.float() # uint8 to fp16/32 |
|||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|||
if img.ndimension() == 3: |
|||
img = img.unsqueeze(0) |
|||
|
|||
# Inference |
|||
t1 = time_synchronized() |
|||
pred = model(img, augment=opt.augment)[0] |
|||
|
|||
# Apply NMS |
|||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|||
t2 = time_synchronized() |
|||
|
|||
# Apply Classifier |
|||
if classify: |
|||
pred = apply_classifier(pred, modelc, img, im0s) |
|||
|
|||
# Process detections |
|||
for i, det in enumerate(pred): # detections per image |
|||
if webcam: # batch_size >= 1 |
|||
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count |
|||
else: |
|||
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) |
|||
|
|||
p = Path(p) # to Path |
|||
save_path = str(save_dir / p.name) # img.jpg |
|||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt |
|||
s += '%gx%g ' % img.shape[2:] # print string |
|||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh |
|||
if len(det): |
|||
# Rescale boxes from img_size to im0 size |
|||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|||
|
|||
# Print results |
|||
for c in det[:, -1].unique(): |
|||
n = (det[:, -1] == c).sum() # detections per class |
|||
s += f'{n} {names[int(c)]}s, ' # add to string |
|||
|
|||
# Write results |
|||
for *xyxy, conf, cls in reversed(det): |
|||
if save_txt: # Write to file |
|||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|||
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format |
|||
with open(txt_path + '.txt', 'a') as f: |
|||
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|||
|
|||
if save_img or view_img: # Add bbox to image |
|||
label = f'{names[int(cls)]} {conf:.2f}' |
|||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) |
|||
|
|||
# Print time (inference + NMS) |
|||
print(f'{s}Done. ({t2 - t1:.3f}s)') |
|||
|
|||
# Stream results |
|||
if view_img: |
|||
cv2.imshow(str(p), im0) |
|||
|
|||
# Save results (image with detections) |
|||
if save_img: |
|||
if dataset.mode == 'image': |
|||
cv2.imwrite(save_path, im0) |
|||
else: # 'video' |
|||
if vid_path != save_path: # new video |
|||
vid_path = save_path |
|||
if isinstance(vid_writer, cv2.VideoWriter): |
|||
vid_writer.release() # release previous video writer |
|||
|
|||
fourcc = 'mp4v' # output video codec |
|||
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|||
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) |
|||
vid_writer.write(im0) |
|||
|
|||
if save_txt or save_img: |
|||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|||
print(f"Results saved to {save_dir}{s}") |
|||
|
|||
print(f'Done. ({time.time() - t0:.3f}s)') |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|||
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam |
|||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') |
|||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') |
|||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--view-img', action='store_true', help='display results') |
|||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') |
|||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') |
|||
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|||
parser.add_argument('--update', action='store_true', help='update all models') |
|||
parser.add_argument('--project', default='runs/detect', help='save results to project/name') |
|||
parser.add_argument('--name', default='exp', help='save results to project/name') |
|||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|||
opt = parser.parse_args() |
|||
print(opt) |
|||
check_requirements() |
|||
|
|||
with torch.no_grad(): |
|||
if opt.update: # update all models (to fix SourceChangeWarning) |
|||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|||
detect() |
|||
strip_optimizer(opt.weights) |
|||
else: |
|||
detect() |
@ -0,0 +1,141 @@ |
|||
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ |
|||
|
|||
Usage: |
|||
import torch |
|||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80) |
|||
""" |
|||
|
|||
from pathlib import Path |
|||
|
|||
import torch |
|||
|
|||
from models.yolo import Model |
|||
from utils.general import set_logging |
|||
from utils.google_utils import attempt_download |
|||
|
|||
dependencies = ['torch', 'yaml'] |
|||
set_logging() |
|||
|
|||
|
|||
def create(name, pretrained, channels, classes, autoshape): |
|||
"""Creates a specified YOLOv5 model |
|||
|
|||
Arguments: |
|||
name (str): name of model, i.e. 'yolov5s' |
|||
pretrained (bool): load pretrained weights into the model |
|||
channels (int): number of input channels |
|||
classes (int): number of model classes |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path |
|||
try: |
|||
model = Model(config, channels, classes) |
|||
if pretrained: |
|||
fname = f'{name}.pt' # checkpoint filename |
|||
attempt_download(fname) # download if not found locally |
|||
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load |
|||
state_dict = ckpt['model'].float().state_dict() # to FP32 |
|||
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter |
|||
model.load_state_dict(state_dict, strict=False) # load |
|||
if len(ckpt['model'].names) == classes: |
|||
model.names = ckpt['model'].names # set class names attribute |
|||
if autoshape: |
|||
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS |
|||
return model |
|||
|
|||
except Exception as e: |
|||
help_url = 'https://github.com/ultralytics/yolov5/issues/36' |
|||
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url |
|||
raise Exception(s) from e |
|||
|
|||
|
|||
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True): |
|||
"""YOLOv5-small model from https://github.com/ultralytics/yolov5 |
|||
|
|||
Arguments: |
|||
pretrained (bool): load pretrained weights into the model, default=False |
|||
channels (int): number of input channels, default=3 |
|||
classes (int): number of model classes, default=80 |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
return create('yolov5s', pretrained, channels, classes, autoshape) |
|||
|
|||
|
|||
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True): |
|||
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5 |
|||
|
|||
Arguments: |
|||
pretrained (bool): load pretrained weights into the model, default=False |
|||
channels (int): number of input channels, default=3 |
|||
classes (int): number of model classes, default=80 |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
return create('yolov5m', pretrained, channels, classes, autoshape) |
|||
|
|||
|
|||
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True): |
|||
"""YOLOv5-large model from https://github.com/ultralytics/yolov5 |
|||
|
|||
Arguments: |
|||
pretrained (bool): load pretrained weights into the model, default=False |
|||
channels (int): number of input channels, default=3 |
|||
classes (int): number of model classes, default=80 |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
return create('yolov5l', pretrained, channels, classes, autoshape) |
|||
|
|||
|
|||
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True): |
|||
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 |
|||
|
|||
Arguments: |
|||
pretrained (bool): load pretrained weights into the model, default=False |
|||
channels (int): number of input channels, default=3 |
|||
classes (int): number of model classes, default=80 |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
return create('yolov5x', pretrained, channels, classes, autoshape) |
|||
|
|||
|
|||
def custom(path_or_model='path/to/model.pt', autoshape=True): |
|||
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5 |
|||
|
|||
Arguments (3 options): |
|||
path_or_model (str): 'path/to/model.pt' |
|||
path_or_model (dict): torch.load('path/to/model.pt') |
|||
path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] |
|||
|
|||
Returns: |
|||
pytorch model |
|||
""" |
|||
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint |
|||
if isinstance(model, dict): |
|||
model = model['model'] # load model |
|||
|
|||
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create |
|||
hub_model.load_state_dict(model.float().state_dict()) # load state_dict |
|||
hub_model.names = model.names # class names |
|||
return hub_model.autoshape() if autoshape else hub_model |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example |
|||
# model = custom(path_or_model='path/to/model.pt') # custom example |
|||
|
|||
# Verify inference |
|||
from PIL import Image |
|||
|
|||
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')] |
|||
results = model(imgs) |
|||
results.show() |
|||
results.print() |
@ -0,0 +1,296 @@ |
|||
# This file contains modules common to various models |
|||
|
|||
import math |
|||
import numpy as np |
|||
import requests |
|||
import torch |
|||
import torch.nn as nn |
|||
from PIL import Image, ImageDraw |
|||
|
|||
from utils.datasets import letterbox |
|||
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh |
|||
from utils.plots import color_list |
|||
|
|||
|
|||
def autopad(k, p=None): # kernel, padding |
|||
# Pad to 'same' |
|||
if p is None: |
|||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad |
|||
return p |
|||
|
|||
|
|||
def DWConv(c1, c2, k=1, s=1, act=True): |
|||
# Depthwise convolution |
|||
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) |
|||
|
|||
|
|||
class Conv(nn.Module): |
|||
# Standard convolution |
|||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups |
|||
super(Conv, self).__init__() |
|||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) |
|||
self.bn = nn.BatchNorm2d(c2) |
|||
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) |
|||
|
|||
def forward(self, x): |
|||
return self.act(self.bn(self.conv(x))) |
|||
|
|||
def fuseforward(self, x): |
|||
return self.act(self.conv(x)) |
|||
|
|||
|
|||
class Bottleneck(nn.Module): |
|||
# Standard bottleneck |
|||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion |
|||
super(Bottleneck, self).__init__() |
|||
c_ = int(c2 * e) # hidden channels |
|||
self.cv1 = Conv(c1, c_, 1, 1) |
|||
self.cv2 = Conv(c_, c2, 3, 1, g=g) |
|||
self.add = shortcut and c1 == c2 |
|||
|
|||
def forward(self, x): |
|||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|||
|
|||
|
|||
class BottleneckCSP(nn.Module): |
|||
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks |
|||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|||
super(BottleneckCSP, self).__init__() |
|||
c_ = int(c2 * e) # hidden channels |
|||
self.cv1 = Conv(c1, c_, 1, 1) |
|||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) |
|||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) |
|||
self.cv4 = Conv(2 * c_, c2, 1, 1) |
|||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) |
|||
self.act = nn.LeakyReLU(0.1, inplace=True) |
|||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) |
|||
|
|||
def forward(self, x): |
|||
y1 = self.cv3(self.m(self.cv1(x))) |
|||
y2 = self.cv2(x) |
|||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) |
|||
|
|||
|
|||
class C3(nn.Module): |
|||
# CSP Bottleneck with 3 convolutions |
|||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion |
|||
super(C3, self).__init__() |
|||
c_ = int(c2 * e) # hidden channels |
|||
self.cv1 = Conv(c1, c_, 1, 1) |
|||
self.cv2 = Conv(c1, c_, 1, 1) |
|||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) |
|||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) |
|||
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) |
|||
|
|||
def forward(self, x): |
|||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) |
|||
|
|||
|
|||
class SPP(nn.Module): |
|||
# Spatial pyramid pooling layer used in YOLOv3-SPP |
|||
def __init__(self, c1, c2, k=(5, 9, 13)): |
|||
super(SPP, self).__init__() |
|||
c_ = c1 // 2 # hidden channels |
|||
self.cv1 = Conv(c1, c_, 1, 1) |
|||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) |
|||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) |
|||
|
|||
def forward(self, x): |
|||
x = self.cv1(x) |
|||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) |
|||
|
|||
|
|||
class Focus(nn.Module): |
|||
# Focus wh information into c-space |
|||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups |
|||
super(Focus, self).__init__() |
|||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) |
|||
# self.contract = Contract(gain=2) |
|||
|
|||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) |
|||
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) |
|||
# return self.conv(self.contract(x)) |
|||
|
|||
|
|||
class Contract(nn.Module): |
|||
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) |
|||
def __init__(self, gain=2): |
|||
super().__init__() |
|||
self.gain = gain |
|||
|
|||
def forward(self, x): |
|||
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' |
|||
s = self.gain |
|||
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) |
|||
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) |
|||
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) |
|||
|
|||
|
|||
class Expand(nn.Module): |
|||
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) |
|||
def __init__(self, gain=2): |
|||
super().__init__() |
|||
self.gain = gain |
|||
|
|||
def forward(self, x): |
|||
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' |
|||
s = self.gain |
|||
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) |
|||
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) |
|||
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) |
|||
|
|||
|
|||
class Concat(nn.Module): |
|||
# Concatenate a list of tensors along dimension |
|||
def __init__(self, dimension=1): |
|||
super(Concat, self).__init__() |
|||
self.d = dimension |
|||
|
|||
def forward(self, x): |
|||
return torch.cat(x, self.d) |
|||
|
|||
|
|||
class NMS(nn.Module): |
|||
# Non-Maximum Suppression (NMS) module |
|||
conf = 0.25 # confidence threshold |
|||
iou = 0.45 # IoU threshold |
|||
classes = None # (optional list) filter by class |
|||
|
|||
def __init__(self): |
|||
super(NMS, self).__init__() |
|||
|
|||
def forward(self, x): |
|||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) |
|||
|
|||
|
|||
class autoShape(nn.Module): |
|||
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS |
|||
img_size = 640 # inference size (pixels) |
|||
conf = 0.25 # NMS confidence threshold |
|||
iou = 0.45 # NMS IoU threshold |
|||
classes = None # (optional list) filter by class |
|||
|
|||
def __init__(self, model): |
|||
super(autoShape, self).__init__() |
|||
self.model = model.eval() |
|||
|
|||
def autoshape(self): |
|||
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape() |
|||
return self |
|||
|
|||
def forward(self, imgs, size=640, augment=False, profile=False): |
|||
# Inference from various sources. For height=720, width=1280, RGB images example inputs are: |
|||
# filename: imgs = 'data/samples/zidane.jpg' |
|||
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' |
|||
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) |
|||
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3) |
|||
# numpy: = np.zeros((720,1280,3)) # HWC |
|||
# torch: = torch.zeros(16,3,720,1280) # BCHW |
|||
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images |
|||
|
|||
p = next(self.model.parameters()) # for device and type |
|||
if isinstance(imgs, torch.Tensor): # torch |
|||
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference |
|||
|
|||
# Pre-process |
|||
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images |
|||
shape0, shape1 = [], [] # image and inference shapes |
|||
for i, im in enumerate(imgs): |
|||
if isinstance(im, str): # filename or uri |
|||
im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open |
|||
im = np.array(im) # to numpy |
|||
if im.shape[0] < 5: # image in CHW |
|||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) |
|||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input |
|||
s = im.shape[:2] # HWC |
|||
shape0.append(s) # image shape |
|||
g = (size / max(s)) # gain |
|||
shape1.append([y * g for y in s]) |
|||
imgs[i] = im # update |
|||
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape |
|||
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad |
|||
x = np.stack(x, 0) if n > 1 else x[0][None] # stack |
|||
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW |
|||
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 |
|||
|
|||
# Inference |
|||
with torch.no_grad(): |
|||
y = self.model(x, augment, profile)[0] # forward |
|||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS |
|||
|
|||
# Post-process |
|||
for i in range(n): |
|||
scale_coords(shape1, y[i][:, :4], shape0[i]) |
|||
|
|||
return Detections(imgs, y, self.names) |
|||
|
|||
|
|||
class Detections: |
|||
# detections class for YOLOv5 inference results |
|||
def __init__(self, imgs, pred, names=None): |
|||
super(Detections, self).__init__() |
|||
d = pred[0].device # device |
|||
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations |
|||
self.imgs = imgs # list of images as numpy arrays |
|||
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) |
|||
self.names = names # class names |
|||
self.xyxy = pred # xyxy pixels |
|||
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels |
|||
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized |
|||
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized |
|||
self.n = len(self.pred) |
|||
|
|||
def display(self, pprint=False, show=False, save=False): |
|||
colors = color_list() |
|||
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): |
|||
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' |
|||
if pred is not None: |
|||
for c in pred[:, -1].unique(): |
|||
n = (pred[:, -1] == c).sum() # detections per class |
|||
str += f'{n} {self.names[int(c)]}s, ' # add to string |
|||
if show or save: |
|||
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np |
|||
for *box, conf, cls in pred: # xyxy, confidence, class |
|||
# str += '%s %.2f, ' % (names[int(cls)], conf) # label |
|||
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot |
|||
if save: |
|||
f = f'results{i}.jpg' |
|||
str += f"saved to '{f}'" |
|||
img.save(f) # save |
|||
if show: |
|||
img.show(f'Image {i}') # show |
|||
if pprint: |
|||
print(str) |
|||
|
|||
def print(self): |
|||
self.display(pprint=True) # print results |
|||
|
|||
def show(self): |
|||
self.display(show=True) # show results |
|||
|
|||
def save(self): |
|||
self.display(save=True) # save results |
|||
|
|||
def __len__(self): |
|||
return self.n |
|||
|
|||
def tolist(self): |
|||
# return a list of Detections objects, i.e. 'for result in results.tolist():' |
|||
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] |
|||
for d in x: |
|||
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: |
|||
setattr(d, k, getattr(d, k)[0]) # pop out of list |
|||
return x |
|||
|
|||
|
|||
class Classify(nn.Module): |
|||
# Classification head, i.e. x(b,c1,20,20) to x(b,c2) |
|||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups |
|||
super(Classify, self).__init__() |
|||
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) |
|||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) |
|||
self.flat = nn.Flatten() |
|||
|
|||
def forward(self, x): |
|||
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list |
|||
return self.flat(self.conv(z)) # flatten to x(b,c2) |
@ -0,0 +1,133 @@ |
|||
# This file contains experimental modules |
|||
|
|||
import numpy as np |
|||
import torch |
|||
import torch.nn as nn |
|||
|
|||
from models.common import Conv, DWConv |
|||
from utils.google_utils import attempt_download |
|||
|
|||
|
|||
class CrossConv(nn.Module): |
|||
# Cross Convolution Downsample |
|||
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): |
|||
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut |
|||
super(CrossConv, self).__init__() |
|||
c_ = int(c2 * e) # hidden channels |
|||
self.cv1 = Conv(c1, c_, (1, k), (1, s)) |
|||
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) |
|||
self.add = shortcut and c1 == c2 |
|||
|
|||
def forward(self, x): |
|||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) |
|||
|
|||
|
|||
class Sum(nn.Module): |
|||
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 |
|||
def __init__(self, n, weight=False): # n: number of inputs |
|||
super(Sum, self).__init__() |
|||
self.weight = weight # apply weights boolean |
|||
self.iter = range(n - 1) # iter object |
|||
if weight: |
|||
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights |
|||
|
|||
def forward(self, x): |
|||
y = x[0] # no weight |
|||
if self.weight: |
|||
w = torch.sigmoid(self.w) * 2 |
|||
for i in self.iter: |
|||
y = y + x[i + 1] * w[i] |
|||
else: |
|||
for i in self.iter: |
|||
y = y + x[i + 1] |
|||
return y |
|||
|
|||
|
|||
class GhostConv(nn.Module): |
|||
# Ghost Convolution https://github.com/huawei-noah/ghostnet |
|||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups |
|||
super(GhostConv, self).__init__() |
|||
c_ = c2 // 2 # hidden channels |
|||
self.cv1 = Conv(c1, c_, k, s, None, g, act) |
|||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) |
|||
|
|||
def forward(self, x): |
|||
y = self.cv1(x) |
|||
return torch.cat([y, self.cv2(y)], 1) |
|||
|
|||
|
|||
class GhostBottleneck(nn.Module): |
|||
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet |
|||
def __init__(self, c1, c2, k, s): |
|||
super(GhostBottleneck, self).__init__() |
|||
c_ = c2 // 2 |
|||
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw |
|||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw |
|||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear |
|||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), |
|||
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() |
|||
|
|||
def forward(self, x): |
|||
return self.conv(x) + self.shortcut(x) |
|||
|
|||
|
|||
class MixConv2d(nn.Module): |
|||
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 |
|||
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): |
|||
super(MixConv2d, self).__init__() |
|||
groups = len(k) |
|||
if equal_ch: # equal c_ per group |
|||
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices |
|||
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels |
|||
else: # equal weight.numel() per group |
|||
b = [c2] + [0] * groups |
|||
a = np.eye(groups + 1, groups, k=-1) |
|||
a -= np.roll(a, 1, axis=1) |
|||
a *= np.array(k) ** 2 |
|||
a[0] = 1 |
|||
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b |
|||
|
|||
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) |
|||
self.bn = nn.BatchNorm2d(c2) |
|||
self.act = nn.LeakyReLU(0.1, inplace=True) |
|||
|
|||
def forward(self, x): |
|||
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) |
|||
|
|||
|
|||
class Ensemble(nn.ModuleList): |
|||
# Ensemble of models |
|||
def __init__(self): |
|||
super(Ensemble, self).__init__() |
|||
|
|||
def forward(self, x, augment=False): |
|||
y = [] |
|||
for module in self: |
|||
y.append(module(x, augment)[0]) |
|||
# y = torch.stack(y).max(0)[0] # max ensemble |
|||
# y = torch.stack(y).mean(0) # mean ensemble |
|||
y = torch.cat(y, 1) # nms ensemble |
|||
return y, None # inference, train output |
|||
|
|||
|
|||
def attempt_load(weights, map_location=None): |
|||
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a |
|||
model = Ensemble() |
|||
for w in weights if isinstance(weights, list) else [weights]: |
|||
attempt_download(w) |
|||
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model |
|||
|
|||
# Compatibility updates |
|||
for m in model.modules(): |
|||
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: |
|||
m.inplace = True # pytorch 1.7.0 compatibility |
|||
elif type(m) is Conv: |
|||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility |
|||
|
|||
if len(model) == 1: |
|||
return model[-1] # return model |
|||
else: |
|||
print('Ensemble created with %s\n' % weights) |
|||
for k in ['names', 'stride']: |
|||
setattr(model, k, getattr(model[-1], k)) |
|||
return model # return ensemble |
@ -0,0 +1,97 @@ |
|||
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats |
|||
|
|||
Usage: |
|||
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 |
|||
""" |
|||
|
|||
import argparse |
|||
import sys |
|||
import time |
|||
|
|||
sys.path.append('./') # to run '$ python *.py' files in subdirectories |
|||
|
|||
import torch |
|||
import torch.nn as nn |
|||
|
|||
import models |
|||
from models.experimental import attempt_load |
|||
from utils.activations import Hardswish, SiLU |
|||
from utils.general import set_logging, check_img_size |
|||
|
|||
if __name__ == '__main__': |
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/ |
|||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width |
|||
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|||
opt = parser.parse_args() |
|||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|||
print(opt) |
|||
set_logging() |
|||
t = time.time() |
|||
|
|||
# Load PyTorch model |
|||
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model |
|||
labels = model.names |
|||
|
|||
# Checks |
|||
gs = int(max(model.stride)) # grid size (max stride) |
|||
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples |
|||
|
|||
# Input |
|||
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection |
|||
|
|||
# Update model |
|||
for k, m in model.named_modules(): |
|||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility |
|||
if isinstance(m, models.common.Conv): # assign export-friendly activations |
|||
if isinstance(m.act, nn.Hardswish): |
|||
m.act = Hardswish() |
|||
elif isinstance(m.act, nn.SiLU): |
|||
m.act = SiLU() |
|||
# elif isinstance(m, models.yolo.Detect): |
|||
# m.forward = m.forward_export # assign forward (optional) |
|||
model.model[-1].export = True # set Detect() layer export=True |
|||
y = model(img) # dry run |
|||
|
|||
# TorchScript export |
|||
try: |
|||
print('\nStarting TorchScript export with torch %s...' % torch.__version__) |
|||
f = opt.weights.replace('.pt', '.torchscript.pt') # filename |
|||
ts = torch.jit.trace(model, img) |
|||
ts.save(f) |
|||
print('TorchScript export success, saved as %s' % f) |
|||
except Exception as e: |
|||
print('TorchScript export failure: %s' % e) |
|||
|
|||
# ONNX export |
|||
try: |
|||
import onnx |
|||
|
|||
print('\nStarting ONNX export with onnx %s...' % onnx.__version__) |
|||
f = opt.weights.replace('.pt', '.onnx') # filename |
|||
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], |
|||
output_names=['classes', 'boxes'] if y is None else ['output']) |
|||
|
|||
# Checks |
|||
onnx_model = onnx.load(f) # load onnx model |
|||
onnx.checker.check_model(onnx_model) # check onnx model |
|||
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model |
|||
print('ONNX export success, saved as %s' % f) |
|||
except Exception as e: |
|||
print('ONNX export failure: %s' % e) |
|||
|
|||
# CoreML export |
|||
try: |
|||
import coremltools as ct |
|||
|
|||
print('\nStarting CoreML export with coremltools %s...' % ct.__version__) |
|||
# convert model from torchscript and apply pixel scaling as per detect.py |
|||
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|||
f = opt.weights.replace('.pt', '.mlmodel') # filename |
|||
model.save(f) |
|||
print('CoreML export success, saved as %s' % f) |
|||
except Exception as e: |
|||
print('CoreML export failure: %s' % e) |
|||
|
|||
# Finish |
|||
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) |
@ -0,0 +1,58 @@ |
|||
# Default YOLOv5 anchors for COCO data |
|||
|
|||
|
|||
# P5 ------------------------------------------------------------------------------------------------------------------- |
|||
# P5-640: |
|||
anchors_p5_640: |
|||
- [ 10,13, 16,30, 33,23 ] # P3/8 |
|||
- [ 30,61, 62,45, 59,119 ] # P4/16 |
|||
- [ 116,90, 156,198, 373,326 ] # P5/32 |
|||
|
|||
|
|||
# P6 ------------------------------------------------------------------------------------------------------------------- |
|||
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 |
|||
anchors_p6_640: |
|||
- [ 9,11, 21,19, 17,41 ] # P3/8 |
|||
- [ 43,32, 39,70, 86,64 ] # P4/16 |
|||
- [ 65,131, 134,130, 120,265 ] # P5/32 |
|||
- [ 282,180, 247,354, 512,387 ] # P6/64 |
|||
|
|||
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 |
|||
anchors_p6_1280: |
|||
- [ 19,27, 44,40, 38,94 ] # P3/8 |
|||
- [ 96,68, 86,152, 180,137 ] # P4/16 |
|||
- [ 140,301, 303,264, 238,542 ] # P5/32 |
|||
- [ 436,615, 739,380, 925,792 ] # P6/64 |
|||
|
|||
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 |
|||
anchors_p6_1920: |
|||
- [ 28,41, 67,59, 57,141 ] # P3/8 |
|||
- [ 144,103, 129,227, 270,205 ] # P4/16 |
|||
- [ 209,452, 455,396, 358,812 ] # P5/32 |
|||
- [ 653,922, 1109,570, 1387,1187 ] # P6/64 |
|||
|
|||
|
|||
# P7 ------------------------------------------------------------------------------------------------------------------- |
|||
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 |
|||
anchors_p7_640: |
|||
- [ 11,11, 13,30, 29,20 ] # P3/8 |
|||
- [ 30,46, 61,38, 39,92 ] # P4/16 |
|||
- [ 78,80, 146,66, 79,163 ] # P5/32 |
|||
- [ 149,150, 321,143, 157,303 ] # P6/64 |
|||
- [ 257,402, 359,290, 524,372 ] # P7/128 |
|||
|
|||
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 |
|||
anchors_p7_1280: |
|||
- [ 19,22, 54,36, 32,77 ] # P3/8 |
|||
- [ 70,83, 138,71, 75,173 ] # P4/16 |
|||
- [ 165,159, 148,334, 375,151 ] # P5/32 |
|||
- [ 334,317, 251,626, 499,474 ] # P6/64 |
|||
- [ 750,326, 534,814, 1079,818 ] # P7/128 |
|||
|
|||
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 |
|||
anchors_p7_1920: |
|||
- [ 29,34, 81,55, 47,115 ] # P3/8 |
|||
- [ 105,124, 207,107, 113,259 ] # P4/16 |
|||
- [ 247,238, 222,500, 563,227 ] # P5/32 |
|||
- [ 501,476, 376,939, 749,711 ] # P6/64 |
|||
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128 |
@ -0,0 +1,51 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# darknet53 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Conv, [32, 3, 1]], # 0 |
|||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 |
|||
[-1, 1, Bottleneck, [64]], |
|||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 |
|||
[-1, 2, Bottleneck, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 |
|||
[-1, 8, Bottleneck, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 |
|||
[-1, 8, Bottleneck, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 |
|||
[-1, 4, Bottleneck, [1024]], # 10 |
|||
] |
|||
|
|||
# YOLOv3-SPP head |
|||
head: |
|||
[[-1, 1, Bottleneck, [1024, False]], |
|||
[-1, 1, SPP, [512, [5, 9, 13]]], |
|||
[-1, 1, Conv, [1024, 3, 1]], |
|||
[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) |
|||
|
|||
[-2, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 1, Bottleneck, [512, False]], |
|||
[-1, 1, Bottleneck, [512, False]], |
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) |
|||
|
|||
[-2, 1, Conv, [128, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 1, Bottleneck, [256, False]], |
|||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) |
|||
|
|||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,41 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,14, 23,27, 37,58] # P4/16 |
|||
- [81,82, 135,169, 344,319] # P5/32 |
|||
|
|||
# YOLOv3-tiny backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Conv, [16, 3, 1]], # 0 |
|||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 |
|||
[-1, 1, Conv, [32, 3, 1]], |
|||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 |
|||
[-1, 1, Conv, [64, 3, 1]], |
|||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 |
|||
[-1, 1, Conv, [128, 3, 1]], |
|||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 |
|||
[-1, 1, Conv, [256, 3, 1]], |
|||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 |
|||
[-1, 1, Conv, [512, 3, 1]], |
|||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 |
|||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 |
|||
] |
|||
|
|||
# YOLOv3-tiny head |
|||
head: |
|||
[[-1, 1, Conv, [1024, 3, 1]], |
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) |
|||
|
|||
[-2, 1, Conv, [128, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) |
|||
|
|||
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) |
|||
] |
@ -0,0 +1,51 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# darknet53 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Conv, [32, 3, 1]], # 0 |
|||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 |
|||
[-1, 1, Bottleneck, [64]], |
|||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 |
|||
[-1, 2, Bottleneck, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8 |
|||
[-1, 8, Bottleneck, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16 |
|||
[-1, 8, Bottleneck, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 |
|||
[-1, 4, Bottleneck, [1024]], # 10 |
|||
] |
|||
|
|||
# YOLOv3 head |
|||
head: |
|||
[[-1, 1, Bottleneck, [1024, False]], |
|||
[-1, 1, Conv, [512, [1, 1]]], |
|||
[-1, 1, Conv, [1024, 3, 1]], |
|||
[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) |
|||
|
|||
[-2, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 8], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 1, Bottleneck, [512, False]], |
|||
[-1, 1, Bottleneck, [512, False]], |
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) |
|||
|
|||
[-2, 1, Conv, [128, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 1, Bottleneck, [256, False]], |
|||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) |
|||
|
|||
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,42 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, Bottleneck, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, BottleneckCSP, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, BottleneckCSP, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 6, BottleneckCSP, [1024]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 FPN head |
|||
head: |
|||
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large) |
|||
|
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium) |
|||
|
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small) |
|||
|
|||
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,54 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: 3 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 |
|||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 |
|||
[ -1, 3, C3, [ 128 ] ], |
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 |
|||
[ -1, 9, C3, [ 256 ] ], |
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 |
|||
[ -1, 9, C3, [ 512 ] ], |
|||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 |
|||
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ], |
|||
[ -1, 3, C3, [ 1024, False ] ], # 9 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 13 |
|||
|
|||
[ -1, 1, Conv, [ 256, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 |
|||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) |
|||
|
|||
[ -1, 1, Conv, [ 128, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2 |
|||
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall) |
|||
|
|||
[ -1, 1, Conv, [ 128, 3, 2 ] ], |
|||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3 |
|||
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small) |
|||
|
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], |
|||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium) |
|||
|
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], |
|||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5 |
|||
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large) |
|||
|
|||
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,56 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: 3 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 |
|||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 |
|||
[ -1, 3, C3, [ 128 ] ], |
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 |
|||
[ -1, 9, C3, [ 256 ] ], |
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 |
|||
[ -1, 9, C3, [ 512 ] ], |
|||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 |
|||
[ -1, 3, C3, [ 768 ] ], |
|||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 |
|||
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ], |
|||
[ -1, 3, C3, [ 1024, False ] ], # 11 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[ [ -1, 1, Conv, [ 768, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 |
|||
[ -1, 3, C3, [ 768, False ] ], # 15 |
|||
|
|||
[ -1, 1, Conv, [ 512, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 19 |
|||
|
|||
[ -1, 1, Conv, [ 256, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 |
|||
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small) |
|||
|
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], |
|||
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium) |
|||
|
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], |
|||
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5 |
|||
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large) |
|||
|
|||
[ -1, 1, Conv, [ 768, 3, 2 ] ], |
|||
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6 |
|||
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge) |
|||
|
|||
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6) |
|||
] |
@ -0,0 +1,67 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: 3 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2 |
|||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 |
|||
[ -1, 3, C3, [ 128 ] ], |
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 |
|||
[ -1, 9, C3, [ 256 ] ], |
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 |
|||
[ -1, 9, C3, [ 512 ] ], |
|||
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32 |
|||
[ -1, 3, C3, [ 768 ] ], |
|||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64 |
|||
[ -1, 3, C3, [ 1024 ] ], |
|||
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128 |
|||
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ], |
|||
[ -1, 3, C3, [ 1280, False ] ], # 13 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6 |
|||
[ -1, 3, C3, [ 1024, False ] ], # 17 |
|||
|
|||
[ -1, 1, Conv, [ 768, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5 |
|||
[ -1, 3, C3, [ 768, False ] ], # 21 |
|||
|
|||
[ -1, 1, Conv, [ 512, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 25 |
|||
|
|||
[ -1, 1, Conv, [ 256, 1, 1 ] ], |
|||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], |
|||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 |
|||
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small) |
|||
|
|||
[ -1, 1, Conv, [ 256, 3, 2 ] ], |
|||
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4 |
|||
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium) |
|||
|
|||
[ -1, 1, Conv, [ 512, 3, 2 ] ], |
|||
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5 |
|||
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large) |
|||
|
|||
[ -1, 1, Conv, [ 768, 3, 2 ] ], |
|||
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6 |
|||
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge) |
|||
|
|||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], |
|||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7 |
|||
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge) |
|||
|
|||
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7) |
|||
] |
@ -0,0 +1,48 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, BottleneckCSP, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, BottleneckCSP, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, BottleneckCSP, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 3, BottleneckCSP, [1024, False]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 PANet head |
|||
head: |
|||
[[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 3, BottleneckCSP, [512, False]], # 13 |
|||
|
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small) |
|||
|
|||
[-1, 1, Conv, [256, 3, 2]], |
|||
[[-1, 14], 1, Concat, [1]], # cat head P4 |
|||
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium) |
|||
|
|||
[-1, 1, Conv, [512, 3, 2]], |
|||
[[-1, 10], 1, Concat, [1]], # cat head P5 |
|||
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large) |
|||
|
|||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,286 @@ |
|||
import argparse |
|||
import logging |
|||
import sys |
|||
from copy import deepcopy |
|||
from pathlib import Path |
|||
|
|||
sys.path.append('./') # to run '$ python *.py' files in subdirectories |
|||
logger = logging.getLogger(__name__) |
|||
|
|||
from models.common import * |
|||
from models.experimental import MixConv2d, CrossConv |
|||
from utils.autoanchor import check_anchor_order |
|||
from utils.general import make_divisible, check_file, set_logging |
|||
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ |
|||
select_device, copy_attr |
|||
|
|||
try: |
|||
import thop # for FLOPS computation |
|||
except ImportError: |
|||
thop = None |
|||
|
|||
|
|||
class Detect(nn.Module): |
|||
stride = None # strides computed during build |
|||
export = False # onnx export |
|||
|
|||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer |
|||
super(Detect, self).__init__() |
|||
self.nc = nc # number of classes |
|||
self.no = nc + 5 # number of outputs per anchor |
|||
self.nl = len(anchors) # number of detection layers |
|||
self.na = len(anchors[0]) // 2 # number of anchors |
|||
self.grid = [torch.zeros(1)] * self.nl # init grid |
|||
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|||
self.register_buffer('anchors', a) # shape(nl,na,2) |
|||
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) |
|||
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv |
|||
|
|||
def forward(self, x): |
|||
# x = x.copy() # for profiling |
|||
z = [] # inference output |
|||
self.training |= self.export |
|||
for i in range(self.nl): |
|||
x[i] = self.m[i](x[i]) # conv |
|||
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) |
|||
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|||
|
|||
if not self.training: # inference |
|||
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|||
|
|||
y = x[i].sigmoid() |
|||
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy |
|||
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh |
|||
z.append(y.view(bs, -1, self.no)) |
|||
|
|||
return x if self.training else (torch.cat(z, 1), x) |
|||
|
|||
@staticmethod |
|||
def _make_grid(nx=20, ny=20): |
|||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|||
|
|||
|
|||
class Model(nn.Module): |
|||
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes |
|||
super(Model, self).__init__() |
|||
if isinstance(cfg, dict): |
|||
self.yaml = cfg # model dict |
|||
else: # is *.yaml |
|||
import yaml # for torch hub |
|||
self.yaml_file = Path(cfg).name |
|||
with open(cfg) as f: |
|||
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|||
|
|||
# Define model |
|||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels |
|||
if nc and nc != self.yaml['nc']: |
|||
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc)) |
|||
self.yaml['nc'] = nc # override yaml value |
|||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist |
|||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names |
|||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) |
|||
|
|||
# Build strides, anchors |
|||
m = self.model[-1] # Detect() |
|||
if isinstance(m, Detect): |
|||
s = 256 # 2x min stride |
|||
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward |
|||
m.anchors /= m.stride.view(-1, 1, 1) |
|||
check_anchor_order(m) |
|||
self.stride = m.stride |
|||
self._initialize_biases() # only run once |
|||
# print('Strides: %s' % m.stride.tolist()) |
|||
|
|||
# Init weights, biases |
|||
initialize_weights(self) |
|||
self.info() |
|||
logger.info('') |
|||
|
|||
def forward(self, x, augment=False, profile=False): |
|||
if augment: |
|||
img_size = x.shape[-2:] # height, width |
|||
s = [1, 0.83, 0.67] # scales |
|||
f = [None, 3, None] # flips (2-ud, 3-lr) |
|||
y = [] # outputs |
|||
for si, fi in zip(s, f): |
|||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) |
|||
yi = self.forward_once(xi)[0] # forward |
|||
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save |
|||
yi[..., :4] /= si # de-scale |
|||
if fi == 2: |
|||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud |
|||
elif fi == 3: |
|||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr |
|||
y.append(yi) |
|||
return torch.cat(y, 1), None # augmented inference, train |
|||
else: |
|||
return self.forward_once(x, profile) # single-scale inference, train |
|||
|
|||
def forward_once(self, x, profile=False): |
|||
y, dt = [], [] # outputs |
|||
for m in self.model: |
|||
if m.f != -1: # if not from previous layer |
|||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers |
|||
|
|||
if profile: |
|||
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS |
|||
t = time_synchronized() |
|||
for _ in range(10): |
|||
_ = m(x) |
|||
dt.append((time_synchronized() - t) * 100) |
|||
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) |
|||
|
|||
x = m(x) # run |
|||
y.append(x if m.i in self.save else None) # save output |
|||
|
|||
if profile: |
|||
print('%.1fms total' % sum(dt)) |
|||
return x |
|||
|
|||
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency |
|||
# https://arxiv.org/abs/1708.02002 section 3.3 |
|||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. |
|||
m = self.model[-1] # Detect() module |
|||
for mi, s in zip(m.m, m.stride): # from |
|||
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) |
|||
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) |
|||
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls |
|||
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|||
|
|||
def _print_biases(self): |
|||
m = self.model[-1] # Detect() module |
|||
for mi in m.m: # from |
|||
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) |
|||
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) |
|||
|
|||
# def _print_weights(self): |
|||
# for m in self.model.modules(): |
|||
# if type(m) is Bottleneck: |
|||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights |
|||
|
|||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers |
|||
print('Fusing layers... ') |
|||
for m in self.model.modules(): |
|||
if type(m) is Conv and hasattr(m, 'bn'): |
|||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv |
|||
delattr(m, 'bn') # remove batchnorm |
|||
m.forward = m.fuseforward # update forward |
|||
self.info() |
|||
return self |
|||
|
|||
def nms(self, mode=True): # add or remove NMS module |
|||
present = type(self.model[-1]) is NMS # last layer is NMS |
|||
if mode and not present: |
|||
print('Adding NMS... ') |
|||
m = NMS() # module |
|||
m.f = -1 # from |
|||
m.i = self.model[-1].i + 1 # index |
|||
self.model.add_module(name='%s' % m.i, module=m) # add |
|||
self.eval() |
|||
elif not mode and present: |
|||
print('Removing NMS... ') |
|||
self.model = self.model[:-1] # remove |
|||
return self |
|||
|
|||
def autoshape(self): # add autoShape module |
|||
print('Adding autoShape... ') |
|||
m = autoShape(self) # wrap model |
|||
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes |
|||
return m |
|||
|
|||
def info(self, verbose=False, img_size=640): # print model information |
|||
model_info(self, verbose, img_size) |
|||
|
|||
|
|||
def parse_model(d, ch): # model_dict, input_channels(3) |
|||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) |
|||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] |
|||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors |
|||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) |
|||
|
|||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out |
|||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args |
|||
m = eval(m) if isinstance(m, str) else m # eval strings |
|||
for j, a in enumerate(args): |
|||
try: |
|||
args[j] = eval(a) if isinstance(a, str) else a # eval strings |
|||
except: |
|||
pass |
|||
|
|||
n = max(round(n * gd), 1) if n > 1 else n # depth gain |
|||
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: |
|||
c1, c2 = ch[f], args[0] |
|||
|
|||
# Normal |
|||
# if i > 0 and args[0] != no: # channel expansion factor |
|||
# ex = 1.75 # exponential (default 2.0) |
|||
# e = math.log(c2 / ch[1]) / math.log(2) |
|||
# c2 = int(ch[1] * ex ** e) |
|||
# if m != Focus: |
|||
|
|||
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 |
|||
|
|||
# Experimental |
|||
# if i > 0 and args[0] != no: # channel expansion factor |
|||
# ex = 1 + gw # exponential (default 2.0) |
|||
# ch1 = 32 # ch[1] |
|||
# e = math.log(c2 / ch1) / math.log(2) # level 1-n |
|||
# c2 = int(ch1 * ex ** e) |
|||
# if m != Focus: |
|||
# c2 = make_divisible(c2, 8) if c2 != no else c2 |
|||
|
|||
args = [c1, c2, *args[1:]] |
|||
if m in [BottleneckCSP, C3]: |
|||
args.insert(2, n) |
|||
n = 1 |
|||
elif m is nn.BatchNorm2d: |
|||
args = [ch[f]] |
|||
elif m is Concat: |
|||
c2 = sum([ch[x if x < 0 else x + 1] for x in f]) |
|||
elif m is Detect: |
|||
args.append([ch[x + 1] for x in f]) |
|||
if isinstance(args[1], int): # number of anchors |
|||
args[1] = [list(range(args[1] * 2))] * len(f) |
|||
elif m is Contract: |
|||
c2 = ch[f if f < 0 else f + 1] * args[0] ** 2 |
|||
elif m is Expand: |
|||
c2 = ch[f if f < 0 else f + 1] // args[0] ** 2 |
|||
else: |
|||
c2 = ch[f if f < 0 else f + 1] |
|||
|
|||
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module |
|||
t = str(m)[8:-2].replace('__main__.', '') # module type |
|||
np = sum([x.numel() for x in m_.parameters()]) # number params |
|||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params |
|||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print |
|||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist |
|||
layers.append(m_) |
|||
ch.append(c2) |
|||
return nn.Sequential(*layers), sorted(save) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') |
|||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
opt = parser.parse_args() |
|||
opt.cfg = check_file(opt.cfg) # check file |
|||
set_logging() |
|||
device = select_device(opt.device) |
|||
|
|||
# Create model |
|||
model = Model(opt.cfg).to(device) |
|||
model.train() |
|||
|
|||
# Profile |
|||
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) |
|||
# y = model(img, profile=True) |
|||
|
|||
# Tensorboard |
|||
# from torch.utils.tensorboard import SummaryWriter |
|||
# tb_writer = SummaryWriter() |
|||
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/") |
|||
# tb_writer.add_graph(model.model, img) # add model to tensorboard |
|||
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard |
@ -0,0 +1,48 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.0 # model depth multiple |
|||
width_multiple: 1.0 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, C3, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, C3, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, C3, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 3, C3, [1024, False]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 3, C3, [512, False]], # 13 |
|||
|
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) |
|||
|
|||
[-1, 1, Conv, [256, 3, 2]], |
|||
[[-1, 14], 1, Concat, [1]], # cat head P4 |
|||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) |
|||
|
|||
[-1, 1, Conv, [512, 3, 2]], |
|||
[[-1, 10], 1, Concat, [1]], # cat head P5 |
|||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) |
|||
|
|||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,48 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 0.67 # model depth multiple |
|||
width_multiple: 0.75 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, C3, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, C3, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, C3, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 3, C3, [1024, False]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 3, C3, [512, False]], # 13 |
|||
|
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) |
|||
|
|||
[-1, 1, Conv, [256, 3, 2]], |
|||
[[-1, 14], 1, Concat, [1]], # cat head P4 |
|||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) |
|||
|
|||
[-1, 1, Conv, [512, 3, 2]], |
|||
[[-1, 10], 1, Concat, [1]], # cat head P5 |
|||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) |
|||
|
|||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,48 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 0.33 # model depth multiple |
|||
width_multiple: 0.50 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, C3, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, C3, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, C3, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 3, C3, [1024, False]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 3, C3, [512, False]], # 13 |
|||
|
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) |
|||
|
|||
[-1, 1, Conv, [256, 3, 2]], |
|||
[[-1, 14], 1, Concat, [1]], # cat head P4 |
|||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) |
|||
|
|||
[-1, 1, Conv, [512, 3, 2]], |
|||
[[-1, 10], 1, Concat, [1]], # cat head P5 |
|||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) |
|||
|
|||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,48 @@ |
|||
# parameters |
|||
nc: 80 # number of classes |
|||
depth_multiple: 1.33 # model depth multiple |
|||
width_multiple: 1.25 # layer channel multiple |
|||
|
|||
# anchors |
|||
anchors: |
|||
- [10,13, 16,30, 33,23] # P3/8 |
|||
- [30,61, 62,45, 59,119] # P4/16 |
|||
- [116,90, 156,198, 373,326] # P5/32 |
|||
|
|||
# YOLOv5 backbone |
|||
backbone: |
|||
# [from, number, module, args] |
|||
[[-1, 1, Focus, [64, 3]], # 0-P1/2 |
|||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 |
|||
[-1, 3, C3, [128]], |
|||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 |
|||
[-1, 9, C3, [256]], |
|||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 |
|||
[-1, 9, C3, [512]], |
|||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 |
|||
[-1, 1, SPP, [1024, [5, 9, 13]]], |
|||
[-1, 3, C3, [1024, False]], # 9 |
|||
] |
|||
|
|||
# YOLOv5 head |
|||
head: |
|||
[[-1, 1, Conv, [512, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 6], 1, Concat, [1]], # cat backbone P4 |
|||
[-1, 3, C3, [512, False]], # 13 |
|||
|
|||
[-1, 1, Conv, [256, 1, 1]], |
|||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
|||
[[-1, 4], 1, Concat, [1]], # cat backbone P3 |
|||
[-1, 3, C3, [256, False]], # 17 (P3/8-small) |
|||
|
|||
[-1, 1, Conv, [256, 3, 2]], |
|||
[[-1, 14], 1, Concat, [1]], # cat head P4 |
|||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) |
|||
|
|||
[-1, 1, Conv, [512, 3, 2]], |
|||
[[-1, 10], 1, Concat, [1]], # cat head P5 |
|||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) |
|||
|
|||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) |
|||
] |
@ -0,0 +1,30 @@ |
|||
# pip install -r requirements.txt |
|||
|
|||
# base ---------------------------------------- |
|||
Cython |
|||
matplotlib>=3.2.2 |
|||
numpy>=1.18.5 |
|||
opencv-python>=4.1.2 |
|||
Pillow |
|||
PyYAML>=5.3 |
|||
scipy>=1.4.1 |
|||
tensorboard>=2.2 |
|||
torch>=1.7.0 |
|||
torchvision>=0.8.1 |
|||
tqdm>=4.41.0 |
|||
|
|||
# logging ------------------------------------- |
|||
# wandb |
|||
|
|||
# plotting ------------------------------------ |
|||
seaborn>=0.11.0 |
|||
pandas |
|||
|
|||
# export -------------------------------------- |
|||
# coremltools==4.0 |
|||
# onnx>=1.8.0 |
|||
# scikit-learn==0.19.2 # for coreml quantization |
|||
|
|||
# extras -------------------------------------- |
|||
thop # FLOPS computation |
|||
pycocotools>=2.0 # COCO mAP |
@ -0,0 +1,335 @@ |
|||
import argparse |
|||
import json |
|||
import os |
|||
from pathlib import Path |
|||
from threading import Thread |
|||
|
|||
import numpy as np |
|||
import torch |
|||
import yaml |
|||
from tqdm import tqdm |
|||
|
|||
from models.experimental import attempt_load |
|||
from utils.datasets import create_dataloader |
|||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \ |
|||
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path |
|||
from utils.loss import compute_loss |
|||
from utils.metrics import ap_per_class, ConfusionMatrix |
|||
from utils.plots import plot_images, output_to_target, plot_study_txt |
|||
from utils.torch_utils import select_device, time_synchronized |
|||
|
|||
|
|||
def test(data, |
|||
weights=None, |
|||
batch_size=32, |
|||
imgsz=640, |
|||
conf_thres=0.001, |
|||
iou_thres=0.6, # for NMS |
|||
save_json=False, |
|||
single_cls=False, |
|||
augment=False, |
|||
verbose=False, |
|||
model=None, |
|||
dataloader=None, |
|||
save_dir=Path(''), # for saving images |
|||
save_txt=False, # for auto-labelling |
|||
save_hybrid=False, # for hybrid auto-labelling |
|||
save_conf=False, # save auto-label confidences |
|||
plots=True, |
|||
log_imgs=0): # number of logged images |
|||
|
|||
# Initialize/load model and set device |
|||
training = model is not None |
|||
if training: # called by train.py |
|||
device = next(model.parameters()).device # get model device |
|||
|
|||
else: # called directly |
|||
set_logging() |
|||
device = select_device(opt.device, batch_size=batch_size) |
|||
|
|||
# Directories |
|||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run |
|||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|||
|
|||
# Load model |
|||
model = attempt_load(weights, map_location=device) # load FP32 model |
|||
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size |
|||
|
|||
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 |
|||
# if device.type != 'cpu' and torch.cuda.device_count() > 1: |
|||
# model = nn.DataParallel(model) |
|||
|
|||
# Half |
|||
half = device.type != 'cpu' # half precision only supported on CUDA |
|||
if half: |
|||
model.half() |
|||
|
|||
# Configure |
|||
model.eval() |
|||
is_coco = data.endswith('coco.yaml') # is COCO dataset |
|||
with open(data) as f: |
|||
data = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|||
check_dataset(data) # check |
|||
nc = 1 if single_cls else int(data['nc']) # number of classes |
|||
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 |
|||
niou = iouv.numel() |
|||
|
|||
# Logging |
|||
log_imgs, wandb = min(log_imgs, 100), None # ceil |
|||
try: |
|||
import wandb # Weights & Biases |
|||
except ImportError: |
|||
log_imgs = 0 |
|||
|
|||
# Dataloader |
|||
if not training: |
|||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img |
|||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once |
|||
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images |
|||
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0] |
|||
|
|||
seen = 0 |
|||
confusion_matrix = ConfusionMatrix(nc=nc) |
|||
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|||
coco91class = coco80_to_coco91_class() |
|||
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|||
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|||
loss = torch.zeros(3, device=device) |
|||
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] |
|||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|||
img = img.to(device, non_blocking=True) |
|||
img = img.half() if half else img.float() # uint8 to fp16/32 |
|||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|||
targets = targets.to(device) |
|||
nb, _, height, width = img.shape # batch size, channels, height, width |
|||
|
|||
with torch.no_grad(): |
|||
# Run model |
|||
t = time_synchronized() |
|||
inf_out, train_out = model(img, augment=augment) # inference and training outputs |
|||
t0 += time_synchronized() - t |
|||
|
|||
# Compute loss |
|||
if training: |
|||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls |
|||
|
|||
# Run NMS |
|||
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels |
|||
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|||
t = time_synchronized() |
|||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) |
|||
t1 += time_synchronized() - t |
|||
|
|||
# Statistics per image |
|||
for si, pred in enumerate(output): |
|||
labels = targets[targets[:, 0] == si, 1:] |
|||
nl = len(labels) |
|||
tcls = labels[:, 0].tolist() if nl else [] # target class |
|||
path = Path(paths[si]) |
|||
seen += 1 |
|||
|
|||
if len(pred) == 0: |
|||
if nl: |
|||
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|||
continue |
|||
|
|||
# Predictions |
|||
predn = pred.clone() |
|||
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred |
|||
|
|||
# Append to text file |
|||
if save_txt: |
|||
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh |
|||
for *xyxy, conf, cls in predn.tolist(): |
|||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format |
|||
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: |
|||
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|||
|
|||
# W&B logging |
|||
if plots and len(wandb_images) < log_imgs: |
|||
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, |
|||
"class_id": int(cls), |
|||
"box_caption": "%s %.3f" % (names[cls], conf), |
|||
"scores": {"class_score": conf}, |
|||
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] |
|||
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space |
|||
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) |
|||
|
|||
# Append to pycocotools JSON dictionary |
|||
if save_json: |
|||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... |
|||
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|||
box = xyxy2xywh(predn[:, :4]) # xywh |
|||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|||
for p, b in zip(pred.tolist(), box.tolist()): |
|||
jdict.append({'image_id': image_id, |
|||
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), |
|||
'bbox': [round(x, 3) for x in b], |
|||
'score': round(p[4], 5)}) |
|||
|
|||
# Assign all predictions as incorrect |
|||
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) |
|||
if nl: |
|||
detected = [] # target indices |
|||
tcls_tensor = labels[:, 0] |
|||
|
|||
# target boxes |
|||
tbox = xywh2xyxy(labels[:, 1:5]) |
|||
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels |
|||
if plots: |
|||
confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1)) |
|||
|
|||
# Per target class |
|||
for cls in torch.unique(tcls_tensor): |
|||
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices |
|||
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices |
|||
|
|||
# Search for detections |
|||
if pi.shape[0]: |
|||
# Prediction to target ious |
|||
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices |
|||
|
|||
# Append detections |
|||
detected_set = set() |
|||
for j in (ious > iouv[0]).nonzero(as_tuple=False): |
|||
d = ti[i[j]] # detected target |
|||
if d.item() not in detected_set: |
|||
detected_set.add(d.item()) |
|||
detected.append(d) |
|||
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn |
|||
if len(detected) == nl: # all targets already located in image |
|||
break |
|||
|
|||
# Append statistics (correct, conf, pcls, tcls) |
|||
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|||
|
|||
# Plot images |
|||
if plots and batch_i < 3: |
|||
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels |
|||
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() |
|||
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions |
|||
Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start() |
|||
|
|||
# Compute statistics |
|||
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy |
|||
if len(stats) and stats[0].any(): |
|||
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) |
|||
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] |
|||
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|||
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class |
|||
else: |
|||
nt = torch.zeros(1) |
|||
|
|||
# Print results |
|||
pf = '%20s' + '%12.3g' * 6 # print format |
|||
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|||
|
|||
# Print results per class |
|||
if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats): |
|||
for i, c in enumerate(ap_class): |
|||
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|||
|
|||
# Print speeds |
|||
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple |
|||
if not training: |
|||
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|||
|
|||
# Plots |
|||
if plots: |
|||
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|||
if wandb and wandb.run: |
|||
wandb.log({"Images": wandb_images}) |
|||
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]}) |
|||
|
|||
# Save JSON |
|||
if save_json and len(jdict): |
|||
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights |
|||
anno_json = '../coco/annotations/instances_val2017.json' # annotations json |
|||
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json |
|||
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) |
|||
with open(pred_json, 'w') as f: |
|||
json.dump(jdict, f) |
|||
|
|||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|||
from pycocotools.coco import COCO |
|||
from pycocotools.cocoeval import COCOeval |
|||
|
|||
anno = COCO(anno_json) # init annotations api |
|||
pred = anno.loadRes(pred_json) # init predictions api |
|||
eval = COCOeval(anno, pred, 'bbox') |
|||
if is_coco: |
|||
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate |
|||
eval.evaluate() |
|||
eval.accumulate() |
|||
eval.summarize() |
|||
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) |
|||
except Exception as e: |
|||
print(f'pycocotools unable to run: {e}') |
|||
|
|||
# Return results |
|||
if not training: |
|||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|||
print(f"Results saved to {save_dir}{s}") |
|||
model.float() # for training |
|||
maps = np.zeros(nc) + map |
|||
for i, c in enumerate(ap_class): |
|||
maps[c] = ap[i] |
|||
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
parser = argparse.ArgumentParser(prog='test.py') |
|||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') |
|||
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') |
|||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|||
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') |
|||
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS') |
|||
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") |
|||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|||
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|||
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|||
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|||
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') |
|||
parser.add_argument('--project', default='runs/test', help='save to project/name') |
|||
parser.add_argument('--name', default='exp', help='save to project/name') |
|||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|||
opt = parser.parse_args() |
|||
opt.save_json |= opt.data.endswith('coco.yaml') |
|||
opt.data = check_file(opt.data) # check file |
|||
print(opt) |
|||
check_requirements() |
|||
|
|||
if opt.task in ['val', 'test']: # run normally |
|||
test(opt.data, |
|||
opt.weights, |
|||
opt.batch_size, |
|||
opt.img_size, |
|||
opt.conf_thres, |
|||
opt.iou_thres, |
|||
opt.save_json, |
|||
opt.single_cls, |
|||
opt.augment, |
|||
opt.verbose, |
|||
save_txt=opt.save_txt | opt.save_hybrid, |
|||
save_hybrid=opt.save_hybrid, |
|||
save_conf=opt.save_conf, |
|||
) |
|||
|
|||
elif opt.task == 'study': # run over a range of settings and save/plot |
|||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to |
|||
x = list(range(320, 800, 64)) # x axis |
|||
y = [] # y axis |
|||
for i in x: # img-size |
|||
print('\nRunning %s point %s...' % (f, i)) |
|||
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|||
plots=False) |
|||
y.append(r + t) # results and times |
|||
np.savetxt(f, y, fmt='%10.4g') # save |
|||
os.system('zip -r study.zip study_*.txt') |
|||
plot_study_txt(f, x) # plot |
@ -0,0 +1,602 @@ |
|||
import argparse |
|||
import logging |
|||
import math |
|||
import os |
|||
import random |
|||
import time |
|||
from pathlib import Path |
|||
from threading import Thread |
|||
from warnings import warn |
|||
|
|||
import numpy as np |
|||
import torch.distributed as dist |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
import torch.optim as optim |
|||
import torch.optim.lr_scheduler as lr_scheduler |
|||
import torch.utils.data |
|||
import yaml |
|||
from torch.cuda import amp |
|||
from torch.nn.parallel import DistributedDataParallel as DDP |
|||
from torch.utils.tensorboard import SummaryWriter |
|||
from tqdm import tqdm |
|||
|
|||
import test # import test.py to get mAP after each epoch |
|||
from models.experimental import attempt_load |
|||
from models.yolo import Model |
|||
from utils.autoanchor import check_anchors |
|||
from utils.datasets import create_dataloader |
|||
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ |
|||
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ |
|||
check_requirements, print_mutation, set_logging, one_cycle |
|||
from utils.google_utils import attempt_download |
|||
from utils.loss import compute_loss |
|||
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution |
|||
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first |
|||
|
|||
logger = logging.getLogger(__name__) |
|||
|
|||
try: |
|||
import wandb |
|||
except ImportError: |
|||
wandb = None |
|||
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)") |
|||
|
|||
|
|||
def train(hyp, opt, device, tb_writer=None, wandb=None): |
|||
logger.info(f'Hyperparameters {hyp}') |
|||
save_dir, epochs, batch_size, total_batch_size, weights, rank = \ |
|||
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank |
|||
|
|||
# Directories |
|||
wdir = save_dir / 'weights' |
|||
wdir.mkdir(parents=True, exist_ok=True) # make dir |
|||
last = wdir / 'last.pt' |
|||
best = wdir / 'best.pt' |
|||
results_file = save_dir / 'results.txt' |
|||
|
|||
# Save run settings |
|||
with open(save_dir / 'hyp.yaml', 'w') as f: |
|||
yaml.dump(hyp, f, sort_keys=False) |
|||
with open(save_dir / 'opt.yaml', 'w') as f: |
|||
yaml.dump(vars(opt), f, sort_keys=False) |
|||
|
|||
# Configure |
|||
plots = not opt.evolve # create plots |
|||
cuda = device.type != 'cpu' |
|||
init_seeds(2 + rank) |
|||
with open(opt.data) as f: |
|||
data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict |
|||
with torch_distributed_zero_first(rank): |
|||
check_dataset(data_dict) # check |
|||
train_path = data_dict['train'] |
|||
test_path = data_dict['val'] |
|||
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes |
|||
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names |
|||
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check |
|||
|
|||
# Model |
|||
pretrained = weights.endswith('.pt') |
|||
if pretrained: |
|||
with torch_distributed_zero_first(rank): |
|||
attempt_download(weights) # download if not found locally |
|||
ckpt = torch.load(weights, map_location=device) # load checkpoint |
|||
if hyp.get('anchors'): |
|||
ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor |
|||
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create |
|||
exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys |
|||
state_dict = ckpt['model'].float().state_dict() # to FP32 |
|||
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect |
|||
model.load_state_dict(state_dict, strict=False) # load |
|||
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report |
|||
else: |
|||
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create |
|||
|
|||
# Freeze |
|||
freeze = [] # parameter names to freeze (full or partial) |
|||
for k, v in model.named_parameters(): |
|||
v.requires_grad = True # train all layers |
|||
if any(x in k for x in freeze): |
|||
print('freezing %s' % k) |
|||
v.requires_grad = False |
|||
|
|||
# Optimizer |
|||
nbs = 64 # nominal batch size |
|||
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing |
|||
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay |
|||
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") |
|||
|
|||
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups |
|||
for k, v in model.named_modules(): |
|||
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): |
|||
pg2.append(v.bias) # biases |
|||
if isinstance(v, nn.BatchNorm2d): |
|||
pg0.append(v.weight) # no decay |
|||
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): |
|||
pg1.append(v.weight) # apply decay |
|||
|
|||
if opt.adam: |
|||
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum |
|||
else: |
|||
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|||
|
|||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay |
|||
optimizer.add_param_group({'params': pg2}) # add pg2 (biases) |
|||
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|||
del pg0, pg1, pg2 |
|||
|
|||
# Scheduler https://arxiv.org/pdf/1812.01187.pdf |
|||
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR |
|||
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] |
|||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|||
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|||
|
|||
# Logging |
|||
if rank in [-1, 0] and wandb and wandb.run is None: |
|||
opt.hyp = hyp # add hyperparameters |
|||
wandb_run = wandb.init(config=opt, resume="allow", |
|||
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, |
|||
name=save_dir.stem, |
|||
id=ckpt.get('wandb_id') if 'ckpt' in locals() else None) |
|||
loggers = {'wandb': wandb} # loggers dict |
|||
|
|||
# Resume |
|||
start_epoch, best_fitness = 0, 0.0 |
|||
if pretrained: |
|||
# Optimizer |
|||
if ckpt['optimizer'] is not None: |
|||
optimizer.load_state_dict(ckpt['optimizer']) |
|||
best_fitness = ckpt['best_fitness'] |
|||
|
|||
# Results |
|||
if ckpt.get('training_results') is not None: |
|||
with open(results_file, 'w') as file: |
|||
file.write(ckpt['training_results']) # write results.txt |
|||
|
|||
# Epochs |
|||
start_epoch = ckpt['epoch'] + 1 |
|||
if opt.resume: |
|||
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) |
|||
if epochs < start_epoch: |
|||
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % |
|||
(weights, ckpt['epoch'], epochs)) |
|||
epochs += ckpt['epoch'] # finetune additional epochs |
|||
|
|||
del ckpt, state_dict |
|||
|
|||
# Image sizes |
|||
gs = int(model.stride.max()) # grid size (max stride) |
|||
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) |
|||
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples |
|||
|
|||
# DP mode |
|||
if cuda and rank == -1 and torch.cuda.device_count() > 1: |
|||
model = torch.nn.DataParallel(model) |
|||
|
|||
# SyncBatchNorm |
|||
if opt.sync_bn and cuda and rank != -1: |
|||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|||
logger.info('Using SyncBatchNorm()') |
|||
|
|||
# EMA |
|||
ema = ModelEMA(model) if rank in [-1, 0] else None |
|||
|
|||
# DDP mode |
|||
if cuda and rank != -1: |
|||
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank) |
|||
|
|||
# Trainloader |
|||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, |
|||
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, |
|||
world_size=opt.world_size, workers=opt.workers, |
|||
image_weights=opt.image_weights, quad=opt.quad) |
|||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class |
|||
nb = len(dataloader) # number of batches |
|||
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) |
|||
|
|||
# Process 0 |
|||
if rank in [-1, 0]: |
|||
ema.updates = start_epoch * nb // accumulate # set EMA updates |
|||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, # testloader |
|||
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, |
|||
rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0] |
|||
|
|||
if not opt.resume: |
|||
labels = np.concatenate(dataset.labels, 0) |
|||
c = torch.tensor(labels[:, 0]) # classes |
|||
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency |
|||
# model._initialize_biases(cf.to(device)) |
|||
if plots: |
|||
plot_labels(labels, save_dir, loggers) |
|||
if tb_writer: |
|||
tb_writer.add_histogram('classes', c, 0) |
|||
|
|||
# Anchors |
|||
if not opt.noautoanchor: |
|||
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|||
|
|||
# Model parameters |
|||
hyp['cls'] *= nc / 80. # scale hyp['cls'] to class count |
|||
hyp['obj'] *= imgsz ** 2 / 640. ** 2 * 3. / nl # scale hyp['obj'] to image size and output layers |
|||
model.nc = nc # attach number of classes to model |
|||
model.hyp = hyp # attach hyperparameters to model |
|||
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) |
|||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights |
|||
model.names = names |
|||
|
|||
# Start training |
|||
t0 = time.time() |
|||
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) |
|||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training |
|||
maps = np.zeros(nc) # mAP per class |
|||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) |
|||
scheduler.last_epoch = start_epoch - 1 # do not move |
|||
scaler = amp.GradScaler(enabled=cuda) |
|||
logger.info('Image sizes %g train, %g test\n' |
|||
'Using %g dataloader workers\nLogging results to %s\n' |
|||
'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs)) |
|||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ |
|||
model.train() |
|||
|
|||
# Update image weights (optional) |
|||
if opt.image_weights: |
|||
# Generate indices |
|||
if rank in [-1, 0]: |
|||
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights |
|||
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights |
|||
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx |
|||
# Broadcast if DDP |
|||
if rank != -1: |
|||
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() |
|||
dist.broadcast(indices, 0) |
|||
if rank != 0: |
|||
dataset.indices = indices.cpu().numpy() |
|||
|
|||
# Update mosaic border |
|||
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) |
|||
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders |
|||
|
|||
mloss = torch.zeros(4, device=device) # mean losses |
|||
if rank != -1: |
|||
dataloader.sampler.set_epoch(epoch) |
|||
pbar = enumerate(dataloader) |
|||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size')) |
|||
if rank in [-1, 0]: |
|||
pbar = tqdm(pbar, total=nb) # progress bar |
|||
optimizer.zero_grad() |
|||
for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- |
|||
ni = i + nb * epoch # number integrated batches (since train start) |
|||
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 |
|||
|
|||
# Warmup |
|||
if ni <= nw: |
|||
xi = [0, nw] # x interp |
|||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) |
|||
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) |
|||
for j, x in enumerate(optimizer.param_groups): |
|||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 |
|||
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) |
|||
if 'momentum' in x: |
|||
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) |
|||
|
|||
# Multi-scale |
|||
if opt.multi_scale: |
|||
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size |
|||
sf = sz / max(imgs.shape[2:]) # scale factor |
|||
if sf != 1: |
|||
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) |
|||
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) |
|||
|
|||
# Forward |
|||
with amp.autocast(enabled=cuda): |
|||
pred = model(imgs) # forward |
|||
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size |
|||
if rank != -1: |
|||
loss *= opt.world_size # gradient averaged between devices in DDP mode |
|||
if opt.quad: |
|||
loss *= 4. |
|||
|
|||
# Backward |
|||
scaler.scale(loss).backward() |
|||
|
|||
# Optimize |
|||
if ni % accumulate == 0: |
|||
scaler.step(optimizer) # optimizer.step |
|||
scaler.update() |
|||
optimizer.zero_grad() |
|||
if ema: |
|||
ema.update(model) |
|||
|
|||
# Print |
|||
if rank in [-1, 0]: |
|||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses |
|||
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) |
|||
s = ('%10s' * 2 + '%10.4g' * 6) % ( |
|||
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1]) |
|||
pbar.set_description(s) |
|||
|
|||
# Plot |
|||
if plots and ni < 3: |
|||
f = save_dir / f'train_batch{ni}.jpg' # filename |
|||
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() |
|||
# if tb_writer: |
|||
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch) |
|||
# tb_writer.add_graph(model, imgs) # add model to tensorboard |
|||
elif plots and ni == 3 and wandb: |
|||
wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]}) |
|||
|
|||
# end batch ------------------------------------------------------------------------------------------------ |
|||
# end epoch ---------------------------------------------------------------------------------------------------- |
|||
|
|||
# Scheduler |
|||
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard |
|||
scheduler.step() |
|||
|
|||
# DDP process 0 or single-GPU |
|||
if rank in [-1, 0]: |
|||
# mAP |
|||
if ema: |
|||
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) |
|||
final_epoch = epoch + 1 == epochs |
|||
if not opt.notest or final_epoch: # Calculate mAP |
|||
results, maps, times = test.test(opt.data, |
|||
batch_size=total_batch_size, |
|||
imgsz=imgsz_test, |
|||
model=ema.ema, |
|||
single_cls=opt.single_cls, |
|||
dataloader=testloader, |
|||
save_dir=save_dir, |
|||
plots=plots and final_epoch, |
|||
log_imgs=opt.log_imgs if wandb else 0) |
|||
|
|||
# Write |
|||
with open(results_file, 'a') as f: |
|||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) |
|||
if len(opt.name) and opt.bucket: |
|||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) |
|||
|
|||
# Log |
|||
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss |
|||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', |
|||
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss |
|||
'x/lr0', 'x/lr1', 'x/lr2'] # params |
|||
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): |
|||
if tb_writer: |
|||
tb_writer.add_scalar(tag, x, epoch) # tensorboard |
|||
if wandb: |
|||
wandb.log({tag: x}) # W&B |
|||
|
|||
# Update best mAP |
|||
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] |
|||
if fi > best_fitness: |
|||
best_fitness = fi |
|||
|
|||
# Save model |
|||
save = (not opt.nosave) or (final_epoch and not opt.evolve) |
|||
if save: |
|||
with open(results_file, 'r') as f: # create checkpoint |
|||
ckpt = {'epoch': epoch, |
|||
'best_fitness': best_fitness, |
|||
'training_results': f.read(), |
|||
'model': ema.ema, |
|||
'optimizer': None if final_epoch else optimizer.state_dict(), |
|||
'wandb_id': wandb_run.id if wandb else None} |
|||
|
|||
# Save last, best and delete |
|||
torch.save(ckpt, last) |
|||
if best_fitness == fi: |
|||
torch.save(ckpt, best) |
|||
del ckpt |
|||
# end epoch ---------------------------------------------------------------------------------------------------- |
|||
# end training |
|||
|
|||
if rank in [-1, 0]: |
|||
# Strip optimizers |
|||
final = best if best.exists() else last # final model |
|||
for f in [last, best]: |
|||
if f.exists(): |
|||
strip_optimizer(f) # strip optimizers |
|||
if opt.bucket: |
|||
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload |
|||
|
|||
# Plots |
|||
if plots: |
|||
plot_results(save_dir=save_dir) # save as results.png |
|||
if wandb: |
|||
files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png'] |
|||
wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files |
|||
if (save_dir / f).exists()]}) |
|||
if opt.log_artifacts: |
|||
wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem) |
|||
|
|||
# Test best.pt |
|||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600)) |
|||
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO |
|||
for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]): # speed, mAP tests |
|||
results, _, _ = test.test(opt.data, |
|||
batch_size=total_batch_size, |
|||
imgsz=imgsz_test, |
|||
conf_thres=conf, |
|||
iou_thres=iou, |
|||
model=attempt_load(final, device).half(), |
|||
single_cls=opt.single_cls, |
|||
dataloader=testloader, |
|||
save_dir=save_dir, |
|||
save_json=save_json, |
|||
plots=False) |
|||
|
|||
else: |
|||
dist.destroy_process_group() |
|||
|
|||
wandb.run.finish() if wandb and wandb.run else None |
|||
torch.cuda.empty_cache() |
|||
return results |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
parser = argparse.ArgumentParser() |
|||
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') |
|||
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|||
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') |
|||
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path') |
|||
parser.add_argument('--epochs', type=int, default=300) |
|||
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') |
|||
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') |
|||
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|||
parser.add_argument('--notest', action='store_true', help='only test final epoch') |
|||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') |
|||
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') |
|||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') |
|||
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|||
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|||
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') |
|||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') |
|||
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100') |
|||
parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model') |
|||
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') |
|||
parser.add_argument('--project', default='runs/train', help='save to project/name') |
|||
parser.add_argument('--name', default='exp', help='save to project/name') |
|||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|||
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|||
opt = parser.parse_args() |
|||
|
|||
# Set DDP variables |
|||
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 |
|||
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 |
|||
set_logging(opt.global_rank) |
|||
if opt.global_rank in [-1, 0]: |
|||
check_git_status() |
|||
check_requirements() |
|||
|
|||
# Resume |
|||
if opt.resume: # resume an interrupted run |
|||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path |
|||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' |
|||
apriori = opt.global_rank, opt.local_rank |
|||
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: |
|||
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace |
|||
opt.cfg, opt.weights, opt.resume, opt.global_rank, opt.local_rank = '', ckpt, True, *apriori # reinstate |
|||
logger.info('Resuming training from %s' % ckpt) |
|||
else: |
|||
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') |
|||
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files |
|||
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |
|||
opt.name = 'evolve' if opt.evolve else opt.name |
|||
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run |
|||
|
|||
# DDP mode |
|||
opt.total_batch_size = opt.batch_size |
|||
device = select_device(opt.device, batch_size=opt.batch_size) |
|||
if opt.local_rank != -1: |
|||
assert torch.cuda.device_count() > opt.local_rank |
|||
torch.cuda.set_device(opt.local_rank) |
|||
device = torch.device('cuda', opt.local_rank) |
|||
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend |
|||
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' |
|||
opt.batch_size = opt.total_batch_size // opt.world_size |
|||
|
|||
# Hyperparameters |
|||
with open(opt.hyp) as f: |
|||
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps |
|||
if 'box' not in hyp: |
|||
warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' % |
|||
(opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120')) |
|||
hyp['box'] = hyp.pop('giou') |
|||
|
|||
# Train |
|||
logger.info(opt) |
|||
if not opt.evolve: |
|||
tb_writer = None # init loggers |
|||
if opt.global_rank in [-1, 0]: |
|||
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/') |
|||
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard |
|||
train(hyp, opt, device, tb_writer, wandb) |
|||
|
|||
# Evolve hyperparameters (optional) |
|||
else: |
|||
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) |
|||
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) |
|||
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) |
|||
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 |
|||
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay |
|||
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) |
|||
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum |
|||
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr |
|||
'box': (1, 0.02, 0.2), # box loss gain |
|||
'cls': (1, 0.2, 4.0), # cls loss gain |
|||
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight |
|||
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) |
|||
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight |
|||
'iou_t': (0, 0.1, 0.7), # IoU training threshold |
|||
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold |
|||
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) |
|||
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) |
|||
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) |
|||
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) |
|||
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) |
|||
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) |
|||
'translate': (1, 0.0, 0.9), # image translation (+/- fraction) |
|||
'scale': (1, 0.0, 0.9), # image scale (+/- gain) |
|||
'shear': (1, 0.0, 10.0), # image shear (+/- deg) |
|||
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 |
|||
'flipud': (1, 0.0, 1.0), # image flip up-down (probability) |
|||
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) |
|||
'mosaic': (1, 0.0, 1.0), # image mixup (probability) |
|||
'mixup': (1, 0.0, 1.0)} # image mixup (probability) |
|||
|
|||
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve' |
|||
opt.notest, opt.nosave = True, True # only test/save final epoch |
|||
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices |
|||
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here |
|||
if opt.bucket: |
|||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists |
|||
|
|||
for _ in range(300): # generations to evolve |
|||
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate |
|||
# Select parent(s) |
|||
parent = 'single' # parent selection method: 'single' or 'weighted' |
|||
x = np.loadtxt('evolve.txt', ndmin=2) |
|||
n = min(5, len(x)) # number of previous results to consider |
|||
x = x[np.argsort(-fitness(x))][:n] # top n mutations |
|||
w = fitness(x) - fitness(x).min() # weights |
|||
if parent == 'single' or len(x) == 1: |
|||
# x = x[random.randint(0, n - 1)] # random selection |
|||
x = x[random.choices(range(n), weights=w)[0]] # weighted selection |
|||
elif parent == 'weighted': |
|||
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination |
|||
|
|||
# Mutate |
|||
mp, s = 0.8, 0.2 # mutation probability, sigma |
|||
npr = np.random |
|||
npr.seed(int(time.time())) |
|||
g = np.array([x[0] for x in meta.values()]) # gains 0-1 |
|||
ng = len(meta) |
|||
v = np.ones(ng) |
|||
while all(v == 1): # mutate until a change occurs (prevent duplicates) |
|||
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) |
|||
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) |
|||
hyp[k] = float(x[i + 7] * v[i]) # mutate |
|||
|
|||
# Constrain to limits |
|||
for k, v in meta.items(): |
|||
hyp[k] = max(hyp[k], v[1]) # lower limit |
|||
hyp[k] = min(hyp[k], v[2]) # upper limit |
|||
hyp[k] = round(hyp[k], 5) # significant digits |
|||
|
|||
# Train mutation |
|||
results = train(hyp.copy(), opt, device, wandb=wandb) |
|||
|
|||
# Write mutation results |
|||
print_mutation(hyp.copy(), results, yaml_file, opt.bucket) |
|||
|
|||
# Plot results |
|||
plot_evolution(yaml_file) |
|||
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n' |
|||
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') |
File diff suppressed because one or more lines are too long
@ -0,0 +1,55 @@ |
|||
import math |
|||
PI = 3.1415926535898 |
|||
DistPerSec = 30.83 |
|||
|
|||
#point_x point_y,目标xy坐标, origin_longitude origin_latitude,激光雷达原点经纬度, direction_angle,y轴与正北方向逆时针夹角 |
|||
def Point2GPS(point_x, point_y, origin_longitude, origin_latitude, direction_angle) : |
|||
|
|||
beta = math.atan2(point_x, point_y) |
|||
if (0 > beta): |
|||
beta += 2 * PI |
|||
|
|||
garma = direction_angle - beta |
|||
if (0 > garma): |
|||
garma += 2 * PI |
|||
|
|||
radius = math.sqrt(point_x * point_x + point_y * point_y) |
|||
|
|||
cal_latitude = radius * math.cos(garma) / DistPerSec |
|||
cal_latitude = cal_latitude / 3600 + origin_latitude |
|||
|
|||
cal_longitude = radius * math.sin(garma) / (DistPerSec * math.cos((cal_latitude) * PI / 180)) |
|||
cal_longitude = cal_longitude / 3600 + origin_longitude |
|||
|
|||
return cal_longitude , cal_latitude |
|||
|
|||
|
|||
# before_longitude before_latitude,目标初始位置经纬度 |
|||
# after_longitude after_latitude,目标终止位置经纬度 |
|||
# time_difference 初始终止位置差时间 |
|||
def GPS2Speed(before_longitude, before_latitude, after_longitude, after_latitude, time_difference) : |
|||
|
|||
NS_point = (after_latitude - before_latitude) * 3600 * DistPerSec |
|||
EW_point = (after_longitude - before_longitude)* 3600 * (DistPerSec * math.cos((after_latitude) * PI / 180)) |
|||
|
|||
NS_speed = NS_point / time_difference |
|||
EW_speed = EW_point / time_difference |
|||
|
|||
speed = math.sqrt(EW_speed * EW_speed + NS_speed * NS_speed) |
|||
|
|||
beta = math.atan2(EW_speed, NS_speed) |
|||
if (0 > beta): |
|||
beta += 2 * PI |
|||
|
|||
heading = beta * (180 / PI) |
|||
|
|||
return speed , heading |
|||
|
|||
|
|||
#test |
|||
|
|||
# lon , lat = Point2GPS(30, 30, 121.23603816, 30.34010020, 0.0) |
|||
# |
|||
# print ("lon = ", lon) |
|||
# print ("lat = ", lat) |
|||
|
@ -0,0 +1,18 @@ |
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|||
""" |
|||
utils/initialization |
|||
""" |
|||
|
|||
|
|||
def notebook_init(): |
|||
# For YOLOv5 notebooks |
|||
print('Checking setup...') |
|||
from IPython import display # to display images and clear console output |
|||
|
|||
from utils.general import emojis |
|||
from utils.torch_utils import select_device # YOLOv5 imports |
|||
|
|||
display.clear_output() |
|||
select_device(newline=False) |
|||
print(emojis('Setup complete ✅')) |
|||
return display |
@ -0,0 +1,72 @@ |
|||
# Activation functions |
|||
|
|||
import torch |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
|
|||
|
|||
# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- |
|||
class SiLU(nn.Module): # export-friendly version of nn.SiLU() |
|||
@staticmethod |
|||
def forward(x): |
|||
return x * torch.sigmoid(x) |
|||
|
|||
|
|||
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() |
|||
@staticmethod |
|||
def forward(x): |
|||
# return x * F.hardsigmoid(x) # for torchscript and CoreML |
|||
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX |
|||
|
|||
|
|||
class MemoryEfficientSwish(nn.Module): |
|||
class F(torch.autograd.Function): |
|||
@staticmethod |
|||
def forward(ctx, x): |
|||
ctx.save_for_backward(x) |
|||
return x * torch.sigmoid(x) |
|||
|
|||
@staticmethod |
|||
def backward(ctx, grad_output): |
|||
x = ctx.saved_tensors[0] |
|||
sx = torch.sigmoid(x) |
|||
return grad_output * (sx * (1 + x * (1 - sx))) |
|||
|
|||
def forward(self, x): |
|||
return self.F.apply(x) |
|||
|
|||
|
|||
# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- |
|||
class Mish(nn.Module): |
|||
@staticmethod |
|||
def forward(x): |
|||
return x * F.softplus(x).tanh() |
|||
|
|||
|
|||
class MemoryEfficientMish(nn.Module): |
|||
class F(torch.autograd.Function): |
|||
@staticmethod |
|||
def forward(ctx, x): |
|||
ctx.save_for_backward(x) |
|||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) |
|||
|
|||
@staticmethod |
|||
def backward(ctx, grad_output): |
|||
x = ctx.saved_tensors[0] |
|||
sx = torch.sigmoid(x) |
|||
fx = F.softplus(x).tanh() |
|||
return grad_output * (fx + x * sx * (1 - fx * fx)) |
|||
|
|||
def forward(self, x): |
|||
return self.F.apply(x) |
|||
|
|||
|
|||
# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- |
|||
class FReLU(nn.Module): |
|||
def __init__(self, c1, k=3): # ch_in, kernel |
|||
super().__init__() |
|||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) |
|||
self.bn = nn.BatchNorm2d(c1) |
|||
|
|||
def forward(self, x): |
|||
return torch.max(x, self.bn(self.conv(x))) |
@ -0,0 +1,152 @@ |
|||
# Auto-anchor utils |
|||
|
|||
import numpy as np |
|||
import torch |
|||
import yaml |
|||
from scipy.cluster.vq import kmeans |
|||
from tqdm import tqdm |
|||
|
|||
|
|||
def check_anchor_order(m): |
|||
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary |
|||
a = m.anchor_grid.prod(-1).view(-1) # anchor area |
|||
da = a[-1] - a[0] # delta a |
|||
ds = m.stride[-1] - m.stride[0] # delta s |
|||
if da.sign() != ds.sign(): # same order |
|||
print('Reversing anchor order') |
|||
m.anchors[:] = m.anchors.flip(0) |
|||
m.anchor_grid[:] = m.anchor_grid.flip(0) |
|||
|
|||
|
|||
def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|||
# Check anchor fit to data, recompute if necessary |
|||
print('\nAnalyzing anchors... ', end='') |
|||
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() |
|||
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|||
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale |
|||
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh |
|||
|
|||
def metric(k): # compute metric |
|||
r = wh[:, None] / k[None] |
|||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|||
best = x.max(1)[0] # best_x |
|||
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold |
|||
bpr = (best > 1. / thr).float().mean() # best possible recall |
|||
return bpr, aat |
|||
|
|||
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2)) |
|||
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='') |
|||
if bpr < 0.98: # threshold to recompute |
|||
print('. Attempting to improve anchors, please wait...') |
|||
na = m.anchor_grid.numel() // 2 # number of anchors |
|||
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) |
|||
new_bpr = metric(new_anchors.reshape(-1, 2))[0] |
|||
if new_bpr > bpr: # replace anchors |
|||
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) |
|||
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference |
|||
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss |
|||
check_anchor_order(m) |
|||
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|||
else: |
|||
print('Original anchors better than new anchors. Proceeding with original anchors.') |
|||
print('') # newline |
|||
|
|||
|
|||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|||
""" Creates kmeans-evolved anchors from training dataset |
|||
|
|||
Arguments: |
|||
path: path to dataset *.yaml, or a loaded dataset |
|||
n: number of anchors |
|||
img_size: image size used for training |
|||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|||
gen: generations to evolve anchors using genetic algorithm |
|||
verbose: print all results |
|||
|
|||
Return: |
|||
k: kmeans evolved anchors |
|||
|
|||
Usage: |
|||
from utils.autoanchor import *; _ = kmean_anchors() |
|||
""" |
|||
thr = 1. / thr |
|||
|
|||
def metric(k, wh): # compute metrics |
|||
r = wh[:, None] / k[None] |
|||
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|||
# x = wh_iou(wh, torch.tensor(k)) # iou metric |
|||
return x, x.max(1)[0] # x, best_x |
|||
|
|||
def anchor_fitness(k): # mutation fitness |
|||
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|||
return (best * (best > thr).float()).mean() # fitness |
|||
|
|||
def print_results(k): |
|||
k = k[np.argsort(k.prod(1))] # sort small to large |
|||
x, best = metric(k, wh0) |
|||
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr |
|||
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) |
|||
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % |
|||
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') |
|||
for i, x in enumerate(k): |
|||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg |
|||
return k |
|||
|
|||
if isinstance(path, str): # *.yaml file |
|||
with open(path) as f: |
|||
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|||
from utils.datasets import LoadImagesAndLabels |
|||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|||
else: |
|||
dataset = path # dataset |
|||
|
|||
# Get label wh |
|||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|||
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh |
|||
|
|||
# Filter |
|||
i = (wh0 < 3.0).any(1).sum() |
|||
if i: |
|||
print('WARNING: Extremely small objects found. ' |
|||
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) |
|||
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels |
|||
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 |
|||
|
|||
# Kmeans calculation |
|||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) |
|||
s = wh.std(0) # sigmas for whitening |
|||
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|||
k *= s |
|||
wh = torch.tensor(wh, dtype=torch.float32) # filtered |
|||
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered |
|||
k = print_results(k) |
|||
|
|||
# Plot |
|||
# k, d = [None] * 20, [None] * 20 |
|||
# for i in tqdm(range(1, 21)): |
|||
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance |
|||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) |
|||
# ax = ax.ravel() |
|||
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') |
|||
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh |
|||
# ax[0].hist(wh[wh[:, 0]<100, 0],400) |
|||
# ax[1].hist(wh[wh[:, 1]<100, 1],400) |
|||
# fig.savefig('wh.png', dpi=200) |
|||
|
|||
# Evolve |
|||
npr = np.random |
|||
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma |
|||
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar |
|||
for _ in pbar: |
|||
v = np.ones(sh) |
|||
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) |
|||
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|||
kg = (k.copy() * v).clip(min=2.0) |
|||
fg = anchor_fitness(kg) |
|||
if fg > f: |
|||
f, k = fg, kg.copy() |
|||
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f |
|||
if verbose: |
|||
print_results(k) |
|||
|
|||
return print_results(k) |
File diff suppressed because it is too large
@ -0,0 +1,501 @@ |
|||
# General utils |
|||
|
|||
import glob |
|||
import logging |
|||
import math |
|||
import os |
|||
import platform |
|||
import random |
|||
import re |
|||
import subprocess |
|||
import time |
|||
from pathlib import Path |
|||
|
|||
import cv2 |
|||
import numpy as np |
|||
import torch |
|||
import torchvision |
|||
import yaml |
|||
|
|||
|
|||
|
|||
# Settings |
|||
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 |
|||
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) |
|||
|
|||
def is_pip(): |
|||
# Is file in a pip package? |
|||
return 'site-packages' in Path(__file__).resolve().parts |
|||
|
|||
|
|||
def is_ascii(s=''): |
|||
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) |
|||
s = str(s) # convert list, tuple, None, etc. to str |
|||
return len(s.encode().decode('ascii', 'ignore')) == len(s) |
|||
|
|||
|
|||
def is_chinese(s='人工智能'): |
|||
# Is string composed of any Chinese characters? |
|||
return re.search('[\u4e00-\u9fff]', s) |
|||
|
|||
|
|||
def emojis(str=''): |
|||
# Return platform-dependent emoji-safe version of string |
|||
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str |
|||
|
|||
def set_logging(rank=-1): |
|||
logging.basicConfig( |
|||
format="%(message)s", |
|||
level=logging.INFO if rank in [-1, 0] else logging.WARN) |
|||
|
|||
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): |
|||
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. |
|||
env = os.getenv(env_var) |
|||
if env: |
|||
path = Path(env) # use environment variable |
|||
else: |
|||
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs |
|||
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir |
|||
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable |
|||
path.mkdir(exist_ok=True) # make if required |
|||
return path |
|||
def is_writeable(dir, test=False): |
|||
# Return True if directory has write permissions, test opening a file with write permissions if test=True |
|||
if test: # method 1 |
|||
file = Path(dir) / 'tmp.txt' |
|||
try: |
|||
with open(file, 'w'): # open file with write permissions |
|||
pass |
|||
file.unlink() # remove file |
|||
return True |
|||
except OSError: |
|||
return False |
|||
else: # method 2 |
|||
return os.access(dir, os.R_OK) # possible issues on Windows |
|||
|
|||
|
|||
# def init_seeds(seed=0): |
|||
# random.seed(seed) |
|||
# np.random.seed(seed) |
|||
# init_torch_seeds(seed) |
|||
|
|||
|
|||
def get_latest_run(search_dir='.'): |
|||
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) |
|||
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|||
return max(last_list, key=os.path.getctime) if last_list else '' |
|||
|
|||
|
|||
def check_git_status(): |
|||
# Suggest 'git pull' if repo is out of date |
|||
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'): |
|||
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') |
|||
if 'Your branch is behind' in s: |
|||
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') |
|||
|
|||
|
|||
def check_requirements(file='requirements.txt'): |
|||
# Check installed dependencies meet requirements |
|||
import pkg_resources |
|||
requirements = pkg_resources.parse_requirements(Path(file).open()) |
|||
requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements] |
|||
pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met |
|||
|
|||
|
|||
def check_img_size(img_size, s=32): |
|||
# Verify img_size is a multiple of stride s |
|||
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple |
|||
if new_size != img_size: |
|||
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) |
|||
return new_size |
|||
|
|||
|
|||
def check_file(file): |
|||
# Search for file if not found |
|||
if os.path.isfile(file) or file == '': |
|||
return file |
|||
else: |
|||
files = glob.glob('./**/' + file, recursive=True) # find file |
|||
assert len(files), 'File Not Found: %s' % file # assert file was found |
|||
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique |
|||
return files[0] # return file |
|||
|
|||
|
|||
def check_dataset(dict): |
|||
# Download dataset if not found locally |
|||
val, s = dict.get('val'), dict.get('download') |
|||
if val and len(val): |
|||
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|||
if not all(x.exists() for x in val): |
|||
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) |
|||
if s and len(s): # download script |
|||
print('Downloading %s ...' % s) |
|||
if s.startswith('http') and s.endswith('.zip'): # URL |
|||
f = Path(s).name # filename |
|||
torch.hub.download_url_to_file(s, f) |
|||
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip |
|||
else: # bash script |
|||
r = os.system(s) |
|||
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value |
|||
else: |
|||
raise Exception('Dataset not found.') |
|||
|
|||
|
|||
def make_divisible(x, divisor): |
|||
# Returns x evenly divisible by divisor |
|||
return math.ceil(x / divisor) * divisor |
|||
|
|||
|
|||
def clean_str(s): |
|||
# Cleans a string by replacing special characters with underscore _ |
|||
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) |
|||
|
|||
|
|||
def one_cycle(y1=0.0, y2=1.0, steps=100): |
|||
# lambda function for sinusoidal ramp from y1 to y2 |
|||
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 |
|||
|
|||
|
|||
def labels_to_class_weights(labels, nc=80): |
|||
# Get class weights (inverse frequency) from training labels |
|||
if labels[0] is None: # no labels loaded |
|||
return torch.Tensor() |
|||
|
|||
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO |
|||
classes = labels[:, 0].astype(np.int) # labels = [class xywh] |
|||
weights = np.bincount(classes, minlength=nc) # occurrences per class |
|||
|
|||
# Prepend gridpoint count (for uCE training) |
|||
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image |
|||
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start |
|||
|
|||
weights[weights == 0] = 1 # replace empty bins with 1 |
|||
weights = 1 / weights # number of targets per class |
|||
weights /= weights.sum() # normalize |
|||
return torch.from_numpy(weights) |
|||
|
|||
|
|||
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|||
# Produces image weights based on class_weights and image contents |
|||
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) |
|||
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) |
|||
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample |
|||
return image_weights |
|||
|
|||
|
|||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) |
|||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ |
|||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|||
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|||
return x |
|||
|
|||
|
|||
def xyxy2xywh(x): |
|||
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center |
|||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center |
|||
y[:, 2] = x[:, 2] - x[:, 0] # width |
|||
y[:, 3] = x[:, 3] - x[:, 1] # height |
|||
return y |
|||
|
|||
|
|||
def xywh2xyxy(x): |
|||
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|||
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x |
|||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y |
|||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x |
|||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y |
|||
return y |
|||
|
|||
|
|||
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): |
|||
# Rescale coords (xyxy) from img1_shape to img0_shape |
|||
if ratio_pad is None: # calculate from img0_shape |
|||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new |
|||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding |
|||
else: |
|||
gain = ratio_pad[0][0] |
|||
pad = ratio_pad[1] |
|||
|
|||
coords[:, [0, 2]] -= pad[0] # x padding |
|||
coords[:, [1, 3]] -= pad[1] # y padding |
|||
coords[:, :4] /= gain |
|||
clip_coords(coords, img0_shape) |
|||
return coords |
|||
|
|||
|
|||
def clip_coords(boxes, img_shape): |
|||
# Clip bounding xyxy bounding boxes to image shape (height, width) |
|||
boxes[:, 0].clamp_(0, img_shape[1]) # x1 |
|||
boxes[:, 1].clamp_(0, img_shape[0]) # y1 |
|||
boxes[:, 2].clamp_(0, img_shape[1]) # x2 |
|||
boxes[:, 3].clamp_(0, img_shape[0]) # y2 |
|||
|
|||
|
|||
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): |
|||
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 |
|||
box2 = box2.T |
|||
|
|||
# Get the coordinates of bounding boxes |
|||
if x1y1x2y2: # x1, y1, x2, y2 = box1 |
|||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|||
else: # transform from xywh to xyxy |
|||
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|||
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|||
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|||
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|||
|
|||
# Intersection area |
|||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|||
|
|||
# Union Area |
|||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|||
union = w1 * h1 + w2 * h2 - inter + eps |
|||
|
|||
iou = inter / union |
|||
if GIoU or DIoU or CIoU: |
|||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width |
|||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height |
|||
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|||
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared |
|||
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + |
|||
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared |
|||
if DIoU: |
|||
return iou - rho2 / c2 # DIoU |
|||
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|||
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|||
with torch.no_grad(): |
|||
alpha = v / ((1 + eps) - iou + v) |
|||
return iou - (rho2 / c2 + v * alpha) # CIoU |
|||
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|||
c_area = cw * ch + eps # convex area |
|||
return iou - (c_area - union) / c_area # GIoU |
|||
else: |
|||
return iou # IoU |
|||
|
|||
|
|||
def box_iou(box1, box2): |
|||
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py |
|||
""" |
|||
Return intersection-over-union (Jaccard index) of boxes. |
|||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|||
Arguments: |
|||
box1 (Tensor[N, 4]) |
|||
box2 (Tensor[M, 4]) |
|||
Returns: |
|||
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|||
IoU values for every element in boxes1 and boxes2 |
|||
""" |
|||
|
|||
def box_area(box): |
|||
# box = 4xn |
|||
return (box[2] - box[0]) * (box[3] - box[1]) |
|||
|
|||
area1 = box_area(box1.T) |
|||
area2 = box_area(box2.T) |
|||
|
|||
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) |
|||
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|||
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) |
|||
|
|||
|
|||
def wh_iou(wh1, wh2): |
|||
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 |
|||
wh1 = wh1[:, None] # [N,1,2] |
|||
wh2 = wh2[None] # [1,M,2] |
|||
inter = torch.min(wh1, wh2).prod(2) # [N,M] |
|||
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) |
|||
|
|||
|
|||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()): |
|||
"""Performs Non-Maximum Suppression (NMS) on inference results |
|||
|
|||
Returns: |
|||
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) |
|||
""" |
|||
|
|||
nc = prediction.shape[2] - 5 # number of classes |
|||
xc = prediction[..., 4] > conf_thres # candidates |
|||
|
|||
# Settings |
|||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height |
|||
max_det = 300 # maximum number of detections per image |
|||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|||
time_limit = 10.0 # seconds to quit after |
|||
redundant = True # require redundant detections |
|||
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) |
|||
merge = False # use merge-NMS |
|||
|
|||
t = time.time() |
|||
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] |
|||
for xi, x in enumerate(prediction): # image index, image inference |
|||
# Apply constraints |
|||
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|||
x = x[xc[xi]] # confidence |
|||
|
|||
# Cat apriori labels if autolabelling |
|||
if labels and len(labels[xi]): |
|||
l = labels[xi] |
|||
v = torch.zeros((len(l), nc + 5), device=x.device) |
|||
v[:, :4] = l[:, 1:5] # box |
|||
v[:, 4] = 1.0 # conf |
|||
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls |
|||
x = torch.cat((x, v), 0) |
|||
|
|||
# If none remain process next image |
|||
if not x.shape[0]: |
|||
continue |
|||
|
|||
# Compute conf |
|||
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf |
|||
|
|||
# Box (center x, center y, width, height) to (x1, y1, x2, y2) |
|||
box = xywh2xyxy(x[:, :4]) |
|||
|
|||
# Detections matrix nx6 (xyxy, conf, cls) |
|||
if multi_label: |
|||
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T |
|||
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|||
else: # best class only |
|||
conf, j = x[:, 5:].max(1, keepdim=True) |
|||
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|||
|
|||
# Filter by class |
|||
if classes is not None: |
|||
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|||
|
|||
# Apply finite constraint |
|||
# if not torch.isfinite(x).all(): |
|||
# x = x[torch.isfinite(x).all(1)] |
|||
|
|||
# Check shape |
|||
n = x.shape[0] # number of boxes |
|||
if not n: # no boxes |
|||
continue |
|||
elif n > max_nms: # excess boxes |
|||
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence |
|||
|
|||
# Batched NMS |
|||
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes |
|||
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores |
|||
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS |
|||
if i.shape[0] > max_det: # limit detections |
|||
i = i[:max_det] |
|||
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) |
|||
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) |
|||
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix |
|||
weights = iou * scores[None] # box weights |
|||
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes |
|||
if redundant: |
|||
i = i[iou.sum(1) > 1] # require redundancy |
|||
|
|||
output[xi] = x[i] |
|||
if (time.time() - t) > time_limit: |
|||
print(f'WARNING: NMS time limit {time_limit}s exceeded') |
|||
break # time limit exceeded |
|||
|
|||
return output |
|||
|
|||
|
|||
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer() |
|||
# Strip optimizer from 'f' to finalize training, optionally save as 's' |
|||
x = torch.load(f, map_location=torch.device('cpu')) |
|||
for key in 'optimizer', 'training_results', 'wandb_id': |
|||
x[key] = None |
|||
x['epoch'] = -1 |
|||
x['model'].half() # to FP16 |
|||
for p in x['model'].parameters(): |
|||
p.requires_grad = False |
|||
torch.save(x, s or f) |
|||
mb = os.path.getsize(s or f) / 1E6 # filesize |
|||
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb)) |
|||
|
|||
|
|||
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|||
# Print mutation results to evolve.txt (for use with train.py --evolve) |
|||
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys |
|||
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values |
|||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) |
|||
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) |
|||
|
|||
if bucket: |
|||
url = 'gs://%s/evolve.txt' % bucket |
|||
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): |
|||
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local |
|||
|
|||
with open('evolve.txt', 'a') as f: # append result |
|||
f.write(c + b + '\n') |
|||
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows |
|||
x = x[np.argsort(-fitness(x))] # sort |
|||
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness |
|||
|
|||
# Save yaml |
|||
for i, k in enumerate(hyp.keys()): |
|||
hyp[k] = float(x[0, i + 7]) |
|||
with open(yaml_file, 'w') as f: |
|||
results = tuple(x[0, :7]) |
|||
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) |
|||
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') |
|||
yaml.dump(hyp, f, sort_keys=False) |
|||
|
|||
if bucket: |
|||
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload |
|||
|
|||
|
|||
def apply_classifier(x, model, img, im0): |
|||
# applies a second stage classifier to yolo outputs |
|||
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|||
for i, d in enumerate(x): # per image |
|||
if d is not None and len(d): |
|||
d = d.clone() |
|||
|
|||
# Reshape and pad cutouts |
|||
b = xyxy2xywh(d[:, :4]) # boxes |
|||
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square |
|||
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad |
|||
d[:, :4] = xywh2xyxy(b).long() |
|||
|
|||
# Rescale boxes from img_size to im0 size |
|||
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) |
|||
|
|||
# Classes |
|||
pred_cls1 = d[:, 5].long() |
|||
ims = [] |
|||
for j, a in enumerate(d): # per item |
|||
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|||
im = cv2.resize(cutout, (224, 224)) # BGR |
|||
# cv2.imwrite('test%i.jpg' % j, cutout) |
|||
|
|||
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|||
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 |
|||
im /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|||
ims.append(im) |
|||
|
|||
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction |
|||
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections |
|||
|
|||
return x |
|||
|
|||
|
|||
def increment_path(path, exist_ok=True, sep=''): |
|||
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. |
|||
path = Path(path) # os-agnostic |
|||
if (path.exists() and exist_ok) or (not path.exists()): |
|||
return str(path) |
|||
else: |
|||
dirs = glob.glob(f"{path}{sep}*") # similar paths |
|||
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] |
|||
i = [int(m.groups()[0]) for m in matches if m] # indices |
|||
n = max(i) + 1 if i else 2 # increment number |
|||
return f"{path}{sep}{n}" # update path |
@ -0,0 +1,25 @@ |
|||
FROM gcr.io/google-appengine/python |
|||
|
|||
# Create a virtualenv for dependencies. This isolates these packages from |
|||
# system-level packages. |
|||
# Use -p python3 or -p python3.7 to select python version. Default is version 2. |
|||
RUN virtualenv /env -p python3 |
|||
|
|||
# Setting these environment variables are the same as running |
|||
# source /env/bin/activate. |
|||
ENV VIRTUAL_ENV /env |
|||
ENV PATH /env/bin:$PATH |
|||
|
|||
RUN apt-get update && apt-get install -y python-opencv |
|||
|
|||
# Copy the application's requirements.txt and run pip to install all |
|||
# dependencies into the virtualenv. |
|||
ADD requirements.txt /app/requirements.txt |
|||
RUN pip install -r /app/requirements.txt |
|||
|
|||
# Add the application source code. |
|||
ADD . /app |
|||
|
|||
# Run a WSGI server to serve the application. gunicorn must be declared as |
|||
# a dependency in requirements.txt. |
|||
CMD gunicorn -b :$PORT main:app |
Some files were not shown because too many files changed in this diff
Loading…
Reference in new issue