three 基础库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1963 lines
44 KiB

import {
BufferAttribute,
BufferGeometry,
Color,
FileLoader,
Float32BufferAttribute,
Group,
LineBasicMaterial,
LineSegments,
Loader,
Matrix4,
Mesh,
MeshPhongMaterial,
MeshStandardMaterial,
ShaderMaterial,
UniformsLib,
UniformsUtils,
Vector3
} from '../../../build/three.module.js';
// Special surface finish tag types.
// Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented
const FINISH_TYPE_DEFAULT = 0;
const FINISH_TYPE_CHROME = 1;
const FINISH_TYPE_PEARLESCENT = 2;
const FINISH_TYPE_RUBBER = 3;
const FINISH_TYPE_MATTE_METALLIC = 4;
const FINISH_TYPE_METAL = 5;
// State machine to search a subobject path.
// The LDraw standard establishes these various possible subfolders.
const FILE_LOCATION_AS_IS = 0;
const FILE_LOCATION_TRY_PARTS = 1;
const FILE_LOCATION_TRY_P = 2;
const FILE_LOCATION_TRY_MODELS = 3;
const FILE_LOCATION_TRY_RELATIVE = 4;
const FILE_LOCATION_TRY_ABSOLUTE = 5;
const FILE_LOCATION_NOT_FOUND = 6;
const conditionalLineVertShader = /* glsl */`
attribute vec3 control0;
attribute vec3 control1;
attribute vec3 direction;
varying float discardFlag;
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <color_vertex>
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
// Transform the line segment ends and control points into camera clip space
vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 );
vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 );
vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 );
c0.xy /= c0.w;
c1.xy /= c1.w;
p0.xy /= p0.w;
p1.xy /= p1.w;
// Get the direction of the segment and an orthogonal vector
vec2 dir = p1.xy - p0.xy;
vec2 norm = vec2( -dir.y, dir.x );
// Get control point directions from the line
vec2 c0dir = c0.xy - p1.xy;
vec2 c1dir = c1.xy - p1.xy;
// If the vectors to the controls points are pointed in different directions away
// from the line segment then the line should not be drawn.
float d0 = dot( normalize( norm ), normalize( c0dir ) );
float d1 = dot( normalize( norm ), normalize( c1dir ) );
discardFlag = float( sign( d0 ) != sign( d1 ) );
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}
`;
const conditionalLineFragShader = /* glsl */`
uniform vec3 diffuse;
uniform float opacity;
varying float discardFlag;
#include <common>
#include <color_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
if ( discardFlag > 0.5 ) discard;
#include <clipping_planes_fragment>
vec3 outgoingLight = vec3( 0.0 );
vec4 diffuseColor = vec4( diffuse, opacity );
#include <logdepthbuf_fragment>
#include <color_fragment>
outgoingLight = diffuseColor.rgb; // simple shader
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#include <tonemapping_fragment>
#include <encodings_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
}
`;
const _tempVec0 = new Vector3();
const _tempVec1 = new Vector3();
function smoothNormals( triangles, lineSegments ) {
function hashVertex( v ) {
// NOTE: 1e2 is pretty coarse but was chosen because it allows edges
// to be smoothed as expected (see minifig arms). The errors between edges
// could be due to matrix multiplication.
const x = ~ ~ ( v.x * 1e2 );
const y = ~ ~ ( v.y * 1e2 );
const z = ~ ~ ( v.z * 1e2 );
return `${ x },${ y },${ z }`;
}
function hashEdge( v0, v1 ) {
return `${ hashVertex( v0 ) }_${ hashVertex( v1 ) }`;
}
const hardEdges = new Set();
const halfEdgeList = {};
const fullHalfEdgeList = {};
const normals = [];
// Save the list of hard edges by hash
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
const v0 = ls.v0;
const v1 = ls.v1;
hardEdges.add( hashEdge( v0, v1 ) );
hardEdges.add( hashEdge( v1, v0 ) );
}
// track the half edges associated with each triangle
for ( let i = 0, l = triangles.length; i < l; i ++ ) {
const tri = triangles[ i ];
for ( let i2 = 0, l2 = 3; i2 < l2; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % 3;
const v0 = tri[ `v${ index }` ];
const v1 = tri[ `v${ next }` ];
const hash = hashEdge( v0, v1 );
// don't add the triangle if the edge is supposed to be hard
if ( hardEdges.has( hash ) ) continue;
halfEdgeList[ hash ] = tri;
fullHalfEdgeList[ hash ] = tri;
}
}
// NOTE: Some of the normals wind up being skewed in an unexpected way because
// quads provide more "influence" to some vertex normals than a triangle due to
// the fact that a quad is made up of two triangles and all triangles are weighted
// equally. To fix this quads could be tracked separately so their vertex normals
// are weighted appropriately or we could try only adding a normal direction
// once per normal.
// Iterate until we've tried to connect all triangles to share normals
while ( true ) {
// Stop if there are no more triangles left
const halfEdges = Object.keys( halfEdgeList );
if ( halfEdges.length === 0 ) break;
// Exhaustively find all connected triangles
let i = 0;
const queue = [ fullHalfEdgeList[ halfEdges[ 0 ] ] ];
while ( i < queue.length ) {
// initialize all vertex normals in this triangle
const tri = queue[ i ];
i ++;
const faceNormal = tri.faceNormal;
if ( tri.n0 === null ) {
tri.n0 = faceNormal.clone();
normals.push( tri.n0 );
}
if ( tri.n1 === null ) {
tri.n1 = faceNormal.clone();
normals.push( tri.n1 );
}
if ( tri.n2 === null ) {
tri.n2 = faceNormal.clone();
normals.push( tri.n2 );
}
// Check if any edge is connected to another triangle edge
for ( let i2 = 0, l2 = 3; i2 < l2; i2 ++ ) {
const index = i2;
const next = ( i2 + 1 ) % 3;
const v0 = tri[ `v${ index }` ];
const v1 = tri[ `v${ next }` ];
// delete this triangle from the list so it won't be found again
const hash = hashEdge( v0, v1 );
delete halfEdgeList[ hash ];
const reverseHash = hashEdge( v1, v0 );
const otherTri = fullHalfEdgeList[ reverseHash ];
if ( otherTri ) {
// NOTE: If the angle between triangles is > 67.5 degrees then assume it's
// hard edge. There are some cases where the line segments do not line up exactly
// with or span multiple triangle edges (see Lunar Vehicle wheels).
if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) {
continue;
}
// if this triangle has already been traversed then it won't be in
// the halfEdgeList. If it has not then add it to the queue and delete
// it so it won't be found again.
if ( reverseHash in halfEdgeList ) {
queue.push( otherTri );
delete halfEdgeList[ reverseHash ];
}
// Find the matching edge in this triangle and copy the normal vector over
for ( let i3 = 0, l3 = 3; i3 < l3; i3 ++ ) {
const otherIndex = i3;
const otherNext = ( i3 + 1 ) % 3;
const otherV0 = otherTri[ `v${ otherIndex }` ];
const otherV1 = otherTri[ `v${ otherNext }` ];
const otherHash = hashEdge( otherV0, otherV1 );
if ( otherHash === reverseHash ) {
if ( otherTri[ `n${ otherIndex }` ] === null ) {
const norm = tri[ `n${ next }` ];
otherTri[ `n${ otherIndex }` ] = norm;
norm.add( otherTri.faceNormal );
}
if ( otherTri[ `n${ otherNext }` ] === null ) {
const norm = tri[ `n${ index }` ];
otherTri[ `n${ otherNext }` ] = norm;
norm.add( otherTri.faceNormal );
}
break;
}
}
}
}
}
}
// The normals of each face have been added up so now we average them by normalizing the vector.
for ( let i = 0, l = normals.length; i < l; i ++ ) {
normals[ i ].normalize();
}
}
function isPrimitiveType( type ) {
return /primitive/i.test( type ) || type === 'Subpart';
}
class LineParser {
constructor( line, lineNumber ) {
this.line = line;
this.lineLength = line.length;
this.currentCharIndex = 0;
this.currentChar = ' ';
this.lineNumber = lineNumber;
}
seekNonSpace() {
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) {
return;
}
this.currentCharIndex ++;
}
}
getToken() {
const pos0 = this.currentCharIndex ++;
// Seek space
while ( this.currentCharIndex < this.lineLength ) {
this.currentChar = this.line.charAt( this.currentCharIndex );
if ( this.currentChar === ' ' || this.currentChar === '\t' ) {
break;
}
this.currentCharIndex ++;
}
const pos1 = this.currentCharIndex;
this.seekNonSpace();
return this.line.substring( pos0, pos1 );
}
getRemainingString() {
return this.line.substring( this.currentCharIndex, this.lineLength );
}
isAtTheEnd() {
return this.currentCharIndex >= this.lineLength;
}
setToEnd() {
this.currentCharIndex = this.lineLength;
}
getLineNumberString() {
return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : '';
}
}
function sortByMaterial( a, b ) {
if ( a.colourCode === b.colourCode ) {
return 0;
}
if ( a.colourCode < b.colourCode ) {
return - 1;
}
return 1;
}
function createObject( elements, elementSize, isConditionalSegments ) {
// Creates a LineSegments (elementSize = 2) or a Mesh (elementSize = 3 )
// With per face / segment material, implemented with mesh groups and materials array
// Sort the triangles or line segments by colour code to make later the mesh groups
elements.sort( sortByMaterial );
const positions = [];
const normals = [];
const materials = [];
const bufferGeometry = new BufferGeometry();
let prevMaterial = null;
let index0 = 0;
let numGroupVerts = 0;
for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) {
const elem = elements[ iElem ];
const v0 = elem.v0;
const v1 = elem.v1;
// Note that LDraw coordinate system is rotated 180 deg. in the X axis w.r.t. Three.js's one
positions.push( v0.x, v0.y, v0.z, v1.x, v1.y, v1.z );
if ( elementSize === 3 ) {
positions.push( elem.v2.x, elem.v2.y, elem.v2.z );
const n0 = elem.n0 || elem.faceNormal;
const n1 = elem.n1 || elem.faceNormal;
const n2 = elem.n2 || elem.faceNormal;
normals.push( n0.x, n0.y, n0.z );
normals.push( n1.x, n1.y, n1.z );
normals.push( n2.x, n2.y, n2.z );
}
if ( prevMaterial !== elem.material ) {
if ( prevMaterial !== null ) {
bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 );
}
materials.push( elem.material );
prevMaterial = elem.material;
index0 = iElem * elementSize;
numGroupVerts = elementSize;
} else {
numGroupVerts += elementSize;
}
}
if ( numGroupVerts > 0 ) {
bufferGeometry.addGroup( index0, Infinity, materials.length - 1 );
}
bufferGeometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
if ( elementSize === 3 ) {
bufferGeometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
let object3d = null;
if ( elementSize === 2 ) {
object3d = new LineSegments( bufferGeometry, materials );
} else if ( elementSize === 3 ) {
object3d = new Mesh( bufferGeometry, materials );
}
if ( isConditionalSegments ) {
object3d.isConditionalLine = true;
const controlArray0 = new Float32Array( elements.length * 3 * 2 );
const controlArray1 = new Float32Array( elements.length * 3 * 2 );
const directionArray = new Float32Array( elements.length * 3 * 2 );
for ( let i = 0, l = elements.length; i < l; i ++ ) {
const os = elements[ i ];
const c0 = os.c0;
const c1 = os.c1;
const v0 = os.v0;
const v1 = os.v1;
const index = i * 3 * 2;
controlArray0[ index + 0 ] = c0.x;
controlArray0[ index + 1 ] = c0.y;
controlArray0[ index + 2 ] = c0.z;
controlArray0[ index + 3 ] = c0.x;
controlArray0[ index + 4 ] = c0.y;
controlArray0[ index + 5 ] = c0.z;
controlArray1[ index + 0 ] = c1.x;
controlArray1[ index + 1 ] = c1.y;
controlArray1[ index + 2 ] = c1.z;
controlArray1[ index + 3 ] = c1.x;
controlArray1[ index + 4 ] = c1.y;
controlArray1[ index + 5 ] = c1.z;
directionArray[ index + 0 ] = v1.x - v0.x;
directionArray[ index + 1 ] = v1.y - v0.y;
directionArray[ index + 2 ] = v1.z - v0.z;
directionArray[ index + 3 ] = v1.x - v0.x;
directionArray[ index + 4 ] = v1.y - v0.y;
directionArray[ index + 5 ] = v1.z - v0.z;
}
bufferGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
bufferGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
bufferGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );
}
return object3d;
}
//
class LDrawLoader extends Loader {
constructor( manager ) {
super( manager );
// This is a stack of 'parse scopes' with one level per subobject loaded file.
// Each level contains a material lib and also other runtime variables passed between parent and child subobjects
// When searching for a material code, the stack is read from top of the stack to bottom
// Each material library is an object map keyed by colour codes.
this.parseScopesStack = null;
// Array of THREE.Material
this.materials = [];
// Not using THREE.Cache here because it returns the previous HTML error response instead of calling onError()
// This also allows to handle the embedded text files ("0 FILE" lines)
this.subobjectCache = {};
// This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error.
this.fileMap = null;
// Add default main triangle and line edge materials (used in piecess that can be coloured with a main color)
this.setMaterials( [
this.parseColourMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ),
this.parseColourMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) )
] );
// If this flag is set to true, each subobject will be a Object.
// If not (the default), only one object which contains all the merged primitives will be created.
this.separateObjects = false;
// If this flag is set to true the vertex normals will be smoothed.
this.smoothNormals = true;
}
load( url, onLoad, onProgress, onError ) {
if ( ! this.fileMap ) {
this.fileMap = {};
}
const scope = this;
const fileLoader = new FileLoader( this.manager );
fileLoader.setPath( this.path );
fileLoader.setRequestHeader( this.requestHeader );
fileLoader.setWithCredentials( this.withCredentials );
fileLoader.load( url, function ( text ) {
scope.processObject( text, onLoad, null, url );
}, onProgress, onError );
}
parse( text, path, onLoad ) {
// Async parse. This function calls onParse with the parsed THREE.Object3D as parameter
this.processObject( text, onLoad, null, path );
}
setMaterials( materials ) {
// Clears parse scopes stack, adds new scope with material library
this.parseScopesStack = [];
this.newParseScopeLevel( materials );
this.getCurrentParseScope().isFromParse = false;
this.materials = materials;
return this;
}
setFileMap( fileMap ) {
this.fileMap = fileMap;
return this;
}
newParseScopeLevel( materials ) {
// Adds a new scope level, assign materials to it and returns it
const matLib = {};
if ( materials ) {
for ( let i = 0, n = materials.length; i < n; i ++ ) {
const material = materials[ i ];
matLib[ material.userData.code ] = material;
}
}
const topParseScope = this.getCurrentParseScope();
const newParseScope = {
lib: matLib,
url: null,
// Subobjects
subobjects: null,
numSubobjects: 0,
subobjectIndex: 0,
inverted: false,
category: null,
keywords: null,
// Current subobject
currentFileName: null,
mainColourCode: topParseScope ? topParseScope.mainColourCode : '16',
mainEdgeColourCode: topParseScope ? topParseScope.mainEdgeColourCode : '24',
currentMatrix: new Matrix4(),
matrix: new Matrix4(),
// If false, it is a root material scope previous to parse
isFromParse: true,
triangles: null,
lineSegments: null,
conditionalSegments: null,
// If true, this object is the start of a construction step
startingConstructionStep: false
};
this.parseScopesStack.push( newParseScope );
return newParseScope;
}
removeScopeLevel() {
this.parseScopesStack.pop();
return this;
}
addMaterial( material ) {
// Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array
const matLib = this.getCurrentParseScope().lib;
if ( ! matLib[ material.userData.code ] ) {
this.materials.push( material );
}
matLib[ material.userData.code ] = material;
return this;
}
getMaterial( colourCode ) {
// Given a colour code search its material in the parse scopes stack
if ( colourCode.startsWith( '0x2' ) ) {
// Special 'direct' material value (RGB colour)
const colour = colourCode.substring( 3 );
return this.parseColourMetaDirective( new LineParser( 'Direct_Color_' + colour + ' CODE -1 VALUE #' + colour + ' EDGE #' + colour + '' ) );
}
for ( let i = this.parseScopesStack.length - 1; i >= 0; i -- ) {
const material = this.parseScopesStack[ i ].lib[ colourCode ];
if ( material ) {
return material;
}
}
// Material was not found
return null;
}
getParentParseScope() {
if ( this.parseScopesStack.length > 1 ) {
return this.parseScopesStack[ this.parseScopesStack.length - 2 ];
}
return null;
}
getCurrentParseScope() {
if ( this.parseScopesStack.length > 0 ) {
return this.parseScopesStack[ this.parseScopesStack.length - 1 ];
}
return null;
}
parseColourMetaDirective( lineParser ) {
// Parses a colour definition and returns a THREE.Material or null if error
let code = null;
// Triangle and line colours
let colour = 0xFF00FF;
let edgeColour = 0xFF00FF;
// Transparency
let alpha = 1;
let isTransparent = false;
// Self-illumination:
let luminance = 0;
let finishType = FINISH_TYPE_DEFAULT;
let canHaveEnvMap = true;
let edgeMaterial = null;
const name = lineParser.getToken();
if ( ! name ) {
throw 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.';
}
// Parse tag tokens and their parameters
let token = null;
while ( true ) {
token = lineParser.getToken();
if ( ! token ) {
break;
}
switch ( token.toUpperCase() ) {
case 'CODE':
code = lineParser.getToken();
break;
case 'VALUE':
colour = lineParser.getToken();
if ( colour.startsWith( '0x' ) ) {
colour = '#' + colour.substring( 2 );
} else if ( ! colour.startsWith( '#' ) ) {
throw 'LDrawLoader: Invalid colour while parsing material' + lineParser.getLineNumberString() + '.';
}
break;
case 'EDGE':
edgeColour = lineParser.getToken();
if ( edgeColour.startsWith( '0x' ) ) {
edgeColour = '#' + edgeColour.substring( 2 );
} else if ( ! edgeColour.startsWith( '#' ) ) {
// Try to see if edge colour is a colour code
edgeMaterial = this.getMaterial( edgeColour );
if ( ! edgeMaterial ) {
throw 'LDrawLoader: Invalid edge colour while parsing material' + lineParser.getLineNumberString() + '.';
}
// Get the edge material for this triangle material
edgeMaterial = edgeMaterial.userData.edgeMaterial;
}
break;
case 'ALPHA':
alpha = parseInt( lineParser.getToken() );
if ( isNaN( alpha ) ) {
throw 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.';
}
alpha = Math.max( 0, Math.min( 1, alpha / 255 ) );
if ( alpha < 1 ) {
isTransparent = true;
}
break;
case 'LUMINANCE':
luminance = parseInt( lineParser.getToken() );
if ( isNaN( luminance ) ) {
throw 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.';
}
luminance = Math.max( 0, Math.min( 1, luminance / 255 ) );
break;
case 'CHROME':
finishType = FINISH_TYPE_CHROME;
break;
case 'PEARLESCENT':
finishType = FINISH_TYPE_PEARLESCENT;
break;
case 'RUBBER':
finishType = FINISH_TYPE_RUBBER;
break;
case 'MATTE_METALLIC':
finishType = FINISH_TYPE_MATTE_METALLIC;
break;
case 'METAL':
finishType = FINISH_TYPE_METAL;
break;
case 'MATERIAL':
// Not implemented
lineParser.setToEnd();
break;
default:
throw 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.';
break;
}
}
let material = null;
switch ( finishType ) {
case FINISH_TYPE_DEFAULT:
material = new MeshStandardMaterial( { color: colour, roughness: 0.3, envMapIntensity: 0.3, metalness: 0 } );
break;
case FINISH_TYPE_PEARLESCENT:
// Try to imitate pearlescency by setting the specular to the complementary of the color, and low shininess
const specular = new Color( colour );
const hsl = specular.getHSL( { h: 0, s: 0, l: 0 } );
hsl.h = ( hsl.h + 0.5 ) % 1;
hsl.l = Math.min( 1, hsl.l + ( 1 - hsl.l ) * 0.7 );
specular.setHSL( hsl.h, hsl.s, hsl.l );
material = new MeshPhongMaterial( { color: colour, specular: specular, shininess: 10, reflectivity: 0.3 } );
break;
case FINISH_TYPE_CHROME:
// Mirror finish surface
material = new MeshStandardMaterial( { color: colour, roughness: 0, metalness: 1 } );
break;
case FINISH_TYPE_RUBBER:
// Rubber finish
material = new MeshStandardMaterial( { color: colour, roughness: 0.9, metalness: 0 } );
canHaveEnvMap = false;
break;
case FINISH_TYPE_MATTE_METALLIC:
// Brushed metal finish
material = new MeshStandardMaterial( { color: colour, roughness: 0.8, metalness: 0.4 } );
break;
case FINISH_TYPE_METAL:
// Average metal finish
material = new MeshStandardMaterial( { color: colour, roughness: 0.2, metalness: 0.85 } );
break;
default:
// Should not happen
break;
}
material.transparent = isTransparent;
material.premultipliedAlpha = true;
material.opacity = alpha;
material.depthWrite = ! isTransparent;
material.polygonOffset = true;
material.polygonOffsetFactor = 1;
material.userData.canHaveEnvMap = canHaveEnvMap;
if ( luminance !== 0 ) {
material.emissive.set( material.color ).multiplyScalar( luminance );
}
if ( ! edgeMaterial ) {
// This is the material used for edges
edgeMaterial = new LineBasicMaterial( {
color: edgeColour,
transparent: isTransparent,
opacity: alpha,
depthWrite: ! isTransparent
} );
edgeMaterial.userData.code = code;
edgeMaterial.name = name + ' - Edge';
edgeMaterial.userData.canHaveEnvMap = false;
// This is the material used for conditional edges
edgeMaterial.userData.conditionalEdgeMaterial = new ShaderMaterial( {
vertexShader: conditionalLineVertShader,
fragmentShader: conditionalLineFragShader,
uniforms: UniformsUtils.merge( [
UniformsLib.fog,
{
diffuse: {
value: new Color( edgeColour )
},
opacity: {
value: alpha
}
}
] ),
fog: true,
transparent: isTransparent,
depthWrite: ! isTransparent
} );
edgeMaterial.userData.conditionalEdgeMaterial.userData.canHaveEnvMap = false;
}
material.userData.code = code;
material.name = name;
material.userData.edgeMaterial = edgeMaterial;
return material;
}
//
objectParse( text ) {
// Retrieve data from the parent parse scope
const parentParseScope = this.getParentParseScope();
// Main colour codes passed to this subobject (or default codes 16 and 24 if it is the root object)
const mainColourCode = parentParseScope.mainColourCode;
const mainEdgeColourCode = parentParseScope.mainEdgeColourCode;
const currentParseScope = this.getCurrentParseScope();
// Parse result variables
let triangles;
let lineSegments;
let conditionalSegments;
const subobjects = [];
let category = null;
let keywords = null;
if ( text.indexOf( '\r\n' ) !== - 1 ) {
// This is faster than String.split with regex that splits on both
text = text.replace( /\r\n/g, '\n' );
}
const lines = text.split( '\n' );
const numLines = lines.length;
let parsingEmbeddedFiles = false;
let currentEmbeddedFileName = null;
let currentEmbeddedText = null;
let bfcCertified = false;
let bfcCCW = true;
let bfcInverted = false;
let bfcCull = true;
let type = '';
let startingConstructionStep = false;
const scope = this;
function parseColourCode( lineParser, forEdge ) {
// Parses next colour code and returns a THREE.Material
let colourCode = lineParser.getToken();
if ( ! forEdge && colourCode === '16' ) {
colourCode = mainColourCode;
}
if ( forEdge && colourCode === '24' ) {
colourCode = mainEdgeColourCode;
}
const material = scope.getMaterial( colourCode );
if ( ! material ) {
throw 'LDrawLoader: Unknown colour code "' + colourCode + '" is used' + lineParser.getLineNumberString() + ' but it was not defined previously.';
}
return material;
}
function parseVector( lp ) {
const v = new Vector3( parseFloat( lp.getToken() ), parseFloat( lp.getToken() ), parseFloat( lp.getToken() ) );
if ( ! scope.separateObjects ) {
v.applyMatrix4( currentParseScope.currentMatrix );
}
return v;
}
// Parse all line commands
for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) {
const line = lines[ lineIndex ];
if ( line.length === 0 ) continue;
if ( parsingEmbeddedFiles ) {
if ( line.startsWith( '0 FILE ' ) ) {
// Save previous embedded file in the cache
this.subobjectCache[ currentEmbeddedFileName.toLowerCase() ] = currentEmbeddedText;
// New embedded text file
currentEmbeddedFileName = line.substring( 7 );
currentEmbeddedText = '';
} else {
currentEmbeddedText += line + '\n';
}
continue;
}
const lp = new LineParser( line, lineIndex + 1 );
lp.seekNonSpace();
if ( lp.isAtTheEnd() ) {
// Empty line
continue;
}
// Parse the line type
const lineType = lp.getToken();
let material;
let segment;
let inverted;
let ccw;
let doubleSided;
let v0, v1, v2, v3, faceNormal;
switch ( lineType ) {
// Line type 0: Comment or META
case '0':
// Parse meta directive
const meta = lp.getToken();
if ( meta ) {
switch ( meta ) {
case '!LDRAW_ORG':
type = lp.getToken();
currentParseScope.triangles = [];
currentParseScope.lineSegments = [];
currentParseScope.conditionalSegments = [];
currentParseScope.type = type;
const isRoot = ! parentParseScope.isFromParse;
if ( isRoot || scope.separateObjects && ! isPrimitiveType( type ) ) {
currentParseScope.groupObject = new Group();
currentParseScope.groupObject.userData.startingConstructionStep = currentParseScope.startingConstructionStep;
}
// If the scale of the object is negated then the triangle winding order
// needs to be flipped.
if (
currentParseScope.matrix.determinant() < 0 && (
scope.separateObjects && isPrimitiveType( type ) ||
! scope.separateObjects
) ) {
currentParseScope.inverted = ! currentParseScope.inverted;
}
triangles = currentParseScope.triangles;
lineSegments = currentParseScope.lineSegments;
conditionalSegments = currentParseScope.conditionalSegments;
break;
case '!COLOUR':
material = this.parseColourMetaDirective( lp );
if ( material ) {
this.addMaterial( material );
} else {
console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() );
}
break;
case '!CATEGORY':
category = lp.getToken();
break;
case '!KEYWORDS':
const newKeywords = lp.getRemainingString().split( ',' );
if ( newKeywords.length > 0 ) {
if ( ! keywords ) {
keywords = [];
}
newKeywords.forEach( function ( keyword ) {
keywords.push( keyword.trim() );
} );
}
break;
case 'FILE':
if ( lineIndex > 0 ) {
// Start embedded text files parsing
parsingEmbeddedFiles = true;
currentEmbeddedFileName = lp.getRemainingString();
currentEmbeddedText = '';
bfcCertified = false;
bfcCCW = true;
}
break;
case 'BFC':
// Changes to the backface culling state
while ( ! lp.isAtTheEnd() ) {
const token = lp.getToken();
switch ( token ) {
case 'CERTIFY':
case 'NOCERTIFY':
bfcCertified = token === 'CERTIFY';
bfcCCW = true;
break;
case 'CW':
case 'CCW':
bfcCCW = token === 'CCW';
break;
case 'INVERTNEXT':
bfcInverted = true;
break;
case 'CLIP':
case 'NOCLIP':
bfcCull = token === 'CLIP';
break;
default:
console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' );
break;
}
}
break;
case 'STEP':
startingConstructionStep = true;
break;
default:
// Other meta directives are not implemented
break;
}
}
break;
// Line type 1: Sub-object file
case '1':
material = parseColourCode( lp );
const posX = parseFloat( lp.getToken() );
const posY = parseFloat( lp.getToken() );
const posZ = parseFloat( lp.getToken() );
const m0 = parseFloat( lp.getToken() );
const m1 = parseFloat( lp.getToken() );
const m2 = parseFloat( lp.getToken() );
const m3 = parseFloat( lp.getToken() );
const m4 = parseFloat( lp.getToken() );
const m5 = parseFloat( lp.getToken() );
const m6 = parseFloat( lp.getToken() );
const m7 = parseFloat( lp.getToken() );
const m8 = parseFloat( lp.getToken() );
const matrix = new Matrix4().set(
m0, m1, m2, posX,
m3, m4, m5, posY,
m6, m7, m8, posZ,
0, 0, 0, 1
);
let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' );
if ( scope.fileMap[ fileName ] ) {
// Found the subobject path in the preloaded file path map
fileName = scope.fileMap[ fileName ];
} else {
// Standardized subfolders
if ( fileName.startsWith( 's/' ) ) {
fileName = 'parts/' + fileName;
} else if ( fileName.startsWith( '48/' ) ) {
fileName = 'p/' + fileName;
}
}
subobjects.push( {
material: material,
matrix: matrix,
fileName: fileName,
originalFileName: fileName,
locationState: FILE_LOCATION_AS_IS,
url: null,
triedLowerCase: false,
inverted: bfcInverted !== currentParseScope.inverted,
startingConstructionStep: startingConstructionStep
} );
bfcInverted = false;
break;
// Line type 2: Line segment
case '2':
material = parseColourCode( lp, true );
segment = {
material: material.userData.edgeMaterial,
colourCode: material.userData.code,
v0: parseVector( lp ),
v1: parseVector( lp )
};
lineSegments.push( segment );
break;
// Line type 5: Conditional Line segment
case '5':
material = parseColourCode( lp, true );
segment = {
material: material.userData.edgeMaterial.userData.conditionalEdgeMaterial,
colourCode: material.userData.code,
v0: parseVector( lp ),
v1: parseVector( lp ),
c0: parseVector( lp ),
c1: parseVector( lp )
};
conditionalSegments.push( segment );
break;
// Line type 3: Triangle
case '3':
material = parseColourCode( lp );
inverted = currentParseScope.inverted;
ccw = bfcCCW !== inverted;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = parseVector( lp );
v1 = parseVector( lp );
v2 = parseVector( lp );
} else {
v2 = parseVector( lp );
v1 = parseVector( lp );
v0 = parseVector( lp );
}
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
faceNormal = new Vector3()
.crossVectors( _tempVec0, _tempVec1 )
.normalize();
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v1,
v2: v2,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
if ( doubleSided === true ) {
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v2,
v2: v1,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
}
break;
// Line type 4: Quadrilateral
case '4':
material = parseColourCode( lp );
inverted = currentParseScope.inverted;
ccw = bfcCCW !== inverted;
doubleSided = ! bfcCertified || ! bfcCull;
if ( ccw === true ) {
v0 = parseVector( lp );
v1 = parseVector( lp );
v2 = parseVector( lp );
v3 = parseVector( lp );
} else {
v3 = parseVector( lp );
v2 = parseVector( lp );
v1 = parseVector( lp );
v0 = parseVector( lp );
}
_tempVec0.subVectors( v1, v0 );
_tempVec1.subVectors( v2, v1 );
faceNormal = new Vector3()
.crossVectors( _tempVec0, _tempVec1 )
.normalize();
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v1,
v2: v2,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v2,
v2: v3,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
if ( doubleSided === true ) {
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v2,
v2: v1,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
triangles.push( {
material: material,
colourCode: material.userData.code,
v0: v0,
v1: v3,
v2: v2,
faceNormal: faceNormal,
n0: null,
n1: null,
n2: null
} );
}
break;
default:
throw 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.';
break;
}
}
if ( parsingEmbeddedFiles ) {
this.subobjectCache[ currentEmbeddedFileName.toLowerCase() ] = currentEmbeddedText;
}
currentParseScope.category = category;
currentParseScope.keywords = keywords;
currentParseScope.subobjects = subobjects;
currentParseScope.numSubobjects = subobjects.length;
currentParseScope.subobjectIndex = 0;
}
computeConstructionSteps( model ) {
// Sets userdata.constructionStep number in Group objects and userData.numConstructionSteps number in the root Group object.
let stepNumber = 0;
model.traverse( c => {
if ( c.isGroup ) {
if ( c.userData.startingConstructionStep ) {
stepNumber ++;
}
c.userData.constructionStep = stepNumber;
}
} );
model.userData.numConstructionSteps = stepNumber + 1;
}
processObject( text, onProcessed, subobject, url ) {
const scope = this;
const parseScope = scope.newParseScopeLevel();
parseScope.url = url;
const parentParseScope = scope.getParentParseScope();
// Set current matrix
if ( subobject ) {
parseScope.currentMatrix.multiplyMatrices( parentParseScope.currentMatrix, subobject.matrix );
parseScope.matrix.copy( subobject.matrix );
parseScope.inverted = subobject.inverted;
parseScope.startingConstructionStep = subobject.startingConstructionStep;
}
// Add to cache
let currentFileName = parentParseScope.currentFileName;
if ( currentFileName !== null ) {
currentFileName = parentParseScope.currentFileName.toLowerCase();
}
if ( scope.subobjectCache[ currentFileName ] === undefined ) {
scope.subobjectCache[ currentFileName ] = text;
}
// Parse the object (returns a Group)
scope.objectParse( text );
let finishedCount = 0;
onSubobjectFinish();
function onSubobjectFinish() {
finishedCount ++;
if ( finishedCount === parseScope.subobjects.length + 1 ) {
finalizeObject();
} else {
// Once the previous subobject has finished we can start processing the next one in the list.
// The subobject processing shares scope in processing so it's important that they be loaded serially
// to avoid race conditions.
// Promise.resolve is used as an approach to asynchronously schedule a task _before_ this frame ends to
// avoid stack overflow exceptions when loading many subobjects from the cache. RequestAnimationFrame
// will work but causes the load to happen after the next frame which causes the load to take significantly longer.
const subobject = parseScope.subobjects[ parseScope.subobjectIndex ];
Promise.resolve().then( function () {
loadSubobject( subobject );
} );
parseScope.subobjectIndex ++;
}
}
function finalizeObject() {
if ( scope.smoothNormals && parseScope.type === 'Part' ) {
smoothNormals( parseScope.triangles, parseScope.lineSegments );
}
const isRoot = ! parentParseScope.isFromParse;
if ( scope.separateObjects && ! isPrimitiveType( parseScope.type ) || isRoot ) {
const objGroup = parseScope.groupObject;
if ( parseScope.triangles.length > 0 ) {
objGroup.add( createObject( parseScope.triangles, 3 ) );
}
if ( parseScope.lineSegments.length > 0 ) {
objGroup.add( createObject( parseScope.lineSegments, 2 ) );
}
if ( parseScope.conditionalSegments.length > 0 ) {
objGroup.add( createObject( parseScope.conditionalSegments, 2, true ) );
}
if ( parentParseScope.groupObject ) {
objGroup.name = parseScope.fileName;
objGroup.userData.category = parseScope.category;
objGroup.userData.keywords = parseScope.keywords;
parseScope.matrix.decompose( objGroup.position, objGroup.quaternion, objGroup.scale );
parentParseScope.groupObject.add( objGroup );
}
} else {
const separateObjects = scope.separateObjects;
const parentLineSegments = parentParseScope.lineSegments;
const parentConditionalSegments = parentParseScope.conditionalSegments;
const parentTriangles = parentParseScope.triangles;
const lineSegments = parseScope.lineSegments;
const conditionalSegments = parseScope.conditionalSegments;
const triangles = parseScope.triangles;
for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
const ls = lineSegments[ i ];
if ( separateObjects ) {
ls.v0.applyMatrix4( parseScope.matrix );
ls.v1.applyMatrix4( parseScope.matrix );
}
parentLineSegments.push( ls );
}
for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) {
const os = conditionalSegments[ i ];
if ( separateObjects ) {
os.v0.applyMatrix4( parseScope.matrix );
os.v1.applyMatrix4( parseScope.matrix );
os.c0.applyMatrix4( parseScope.matrix );
os.c1.applyMatrix4( parseScope.matrix );
}
parentConditionalSegments.push( os );
}
for ( let i = 0, l = triangles.length; i < l; i ++ ) {
const tri = triangles[ i ];
if ( separateObjects ) {
tri.v0 = tri.v0.clone().applyMatrix4( parseScope.matrix );
tri.v1 = tri.v1.clone().applyMatrix4( parseScope.matrix );
tri.v2 = tri.v2.clone().applyMatrix4( parseScope.matrix );
_tempVec0.subVectors( tri.v1, tri.v0 );
_tempVec1.subVectors( tri.v2, tri.v1 );
tri.faceNormal.crossVectors( _tempVec0, _tempVec1 ).normalize();
}
parentTriangles.push( tri );
}
}
scope.removeScopeLevel();
// If it is root object, compute construction steps
if ( ! parentParseScope.isFromParse ) {
scope.computeConstructionSteps( parseScope.groupObject );
}
if ( onProcessed ) {
onProcessed( parseScope.groupObject );
}
}
function loadSubobject( subobject ) {
parseScope.mainColourCode = subobject.material.userData.code;
parseScope.mainEdgeColourCode = subobject.material.userData.edgeMaterial.userData.code;
parseScope.currentFileName = subobject.originalFileName;
// If subobject was cached previously, use the cached one
const cached = scope.subobjectCache[ subobject.originalFileName.toLowerCase() ];
if ( cached ) {
scope.processObject( cached, function ( subobjectGroup ) {
onSubobjectLoaded( subobjectGroup, subobject );
onSubobjectFinish();
}, subobject, url );
return;
}
// Adjust file name to locate the subobject file path in standard locations (always under directory scope.path)
// Update also subobject.locationState for the next try if this load fails.
let subobjectURL = subobject.fileName;
let newLocationState = FILE_LOCATION_NOT_FOUND;
switch ( subobject.locationState ) {
case FILE_LOCATION_AS_IS:
newLocationState = subobject.locationState + 1;
break;
case FILE_LOCATION_TRY_PARTS:
subobjectURL = 'parts/' + subobjectURL;
newLocationState = subobject.locationState + 1;
break;
case FILE_LOCATION_TRY_P:
subobjectURL = 'p/' + subobjectURL;
newLocationState = subobject.locationState + 1;
break;
case FILE_LOCATION_TRY_MODELS:
subobjectURL = 'models/' + subobjectURL;
newLocationState = subobject.locationState + 1;
break;
case FILE_LOCATION_TRY_RELATIVE:
subobjectURL = url.substring( 0, url.lastIndexOf( '/' ) + 1 ) + subobjectURL;
newLocationState = subobject.locationState + 1;
break;
case FILE_LOCATION_TRY_ABSOLUTE:
if ( subobject.triedLowerCase ) {
// Try absolute path
newLocationState = FILE_LOCATION_NOT_FOUND;
} else {
// Next attempt is lower case
subobject.fileName = subobject.fileName.toLowerCase();
subobjectURL = subobject.fileName;
subobject.triedLowerCase = true;
newLocationState = FILE_LOCATION_AS_IS;
}
break;
case FILE_LOCATION_NOT_FOUND:
// All location possibilities have been tried, give up loading this object
console.warn( 'LDrawLoader: Subobject "' + subobject.originalFileName + '" could not be found.' );
return;
}
subobject.locationState = newLocationState;
subobject.url = subobjectURL;
// Load the subobject
// Use another file loader here so we can keep track of the subobject information
// and use it when processing the next model.
const fileLoader = new FileLoader( scope.manager );
fileLoader.setPath( scope.path );
fileLoader.setRequestHeader( scope.requestHeader );
fileLoader.setWithCredentials( scope.withCredentials );
fileLoader.load( subobjectURL, function ( text ) {
scope.processObject( text, function ( subobjectGroup ) {
onSubobjectLoaded( subobjectGroup, subobject );
onSubobjectFinish();
}, subobject, url );
}, undefined, function ( err ) {
onSubobjectError( err, subobject );
}, subobject );
}
function onSubobjectLoaded( subobjectGroup, subobject ) {
if ( subobjectGroup === null ) {
// Try to reload
loadSubobject( subobject );
return;
}
scope.fileMap[ subobject.originalFileName ] = subobject.url;
}
function onSubobjectError( err, subobject ) {
// Retry download from a different default possible location
loadSubobject( subobject );
}
}
}
export { LDrawLoader };