You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
346 lines
9.3 KiB
346 lines
9.3 KiB
( function () {
|
|
|
|
/**
|
|
* Generate a texture that represents the luminosity of the current scene, adapted over time
|
|
* to simulate the optic nerve responding to the amount of light it is receiving.
|
|
* Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline"
|
|
*
|
|
* Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf
|
|
*/
|
|
|
|
class AdaptiveToneMappingPass extends THREE.Pass {
|
|
|
|
constructor( adaptive, resolution ) {
|
|
|
|
super();
|
|
this.resolution = resolution !== undefined ? resolution : 256;
|
|
this.needsInit = true;
|
|
this.adaptive = adaptive !== undefined ? !! adaptive : true;
|
|
this.luminanceRT = null;
|
|
this.previousLuminanceRT = null;
|
|
this.currentLuminanceRT = null;
|
|
if ( THREE.CopyShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.CopyShader' );
|
|
const copyShader = THREE.CopyShader;
|
|
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
|
|
this.materialCopy = new THREE.ShaderMaterial( {
|
|
uniforms: this.copyUniforms,
|
|
vertexShader: copyShader.vertexShader,
|
|
fragmentShader: copyShader.fragmentShader,
|
|
blending: THREE.NoBlending,
|
|
depthTest: false
|
|
} );
|
|
if ( THREE.LuminosityShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader' );
|
|
this.materialLuminance = new THREE.ShaderMaterial( {
|
|
uniforms: THREE.UniformsUtils.clone( THREE.LuminosityShader.uniforms ),
|
|
vertexShader: THREE.LuminosityShader.vertexShader,
|
|
fragmentShader: THREE.LuminosityShader.fragmentShader,
|
|
blending: THREE.NoBlending
|
|
} );
|
|
this.adaptLuminanceShader = {
|
|
defines: {
|
|
'MIP_LEVEL_1X1': ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 )
|
|
},
|
|
uniforms: {
|
|
'lastLum': {
|
|
value: null
|
|
},
|
|
'currentLum': {
|
|
value: null
|
|
},
|
|
'minLuminance': {
|
|
value: 0.01
|
|
},
|
|
'delta': {
|
|
value: 0.016
|
|
},
|
|
'tau': {
|
|
value: 1.0
|
|
}
|
|
},
|
|
vertexShader: `varying vec2 vUv;
|
|
|
|
void main() {
|
|
|
|
vUv = uv;
|
|
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
|
|
|
|
}`,
|
|
fragmentShader: `varying vec2 vUv;
|
|
|
|
uniform sampler2D lastLum;
|
|
uniform sampler2D currentLum;
|
|
uniform float minLuminance;
|
|
uniform float delta;
|
|
uniform float tau;
|
|
|
|
void main() {
|
|
|
|
vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );
|
|
vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );
|
|
|
|
float fLastLum = max( minLuminance, lastLum.r );
|
|
float fCurrentLum = max( minLuminance, currentLum.r );
|
|
|
|
//The adaption seems to work better in extreme lighting differences
|
|
//if the input luminance is squared.
|
|
fCurrentLum *= fCurrentLum;
|
|
|
|
// Adapt the luminance using Pattanaik's technique
|
|
float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));
|
|
// "fAdaptedLum = sqrt(fAdaptedLum);
|
|
gl_FragColor.r = fAdaptedLum;
|
|
}`
|
|
};
|
|
this.materialAdaptiveLum = new THREE.ShaderMaterial( {
|
|
uniforms: THREE.UniformsUtils.clone( this.adaptLuminanceShader.uniforms ),
|
|
vertexShader: this.adaptLuminanceShader.vertexShader,
|
|
fragmentShader: this.adaptLuminanceShader.fragmentShader,
|
|
defines: Object.assign( {}, this.adaptLuminanceShader.defines ),
|
|
blending: THREE.NoBlending
|
|
} );
|
|
if ( THREE.ToneMapShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader' );
|
|
this.materialToneMap = new THREE.ShaderMaterial( {
|
|
uniforms: THREE.UniformsUtils.clone( THREE.ToneMapShader.uniforms ),
|
|
vertexShader: THREE.ToneMapShader.vertexShader,
|
|
fragmentShader: THREE.ToneMapShader.fragmentShader,
|
|
blending: THREE.NoBlending
|
|
} );
|
|
this.fsQuad = new THREE.FullScreenQuad( null );
|
|
|
|
}
|
|
|
|
render( renderer, writeBuffer, readBuffer, deltaTime
|
|
/*, maskActive*/
|
|
) {
|
|
|
|
if ( this.needsInit ) {
|
|
|
|
this.reset( renderer );
|
|
this.luminanceRT.texture.type = readBuffer.texture.type;
|
|
this.previousLuminanceRT.texture.type = readBuffer.texture.type;
|
|
this.currentLuminanceRT.texture.type = readBuffer.texture.type;
|
|
this.needsInit = false;
|
|
|
|
}
|
|
|
|
if ( this.adaptive ) {
|
|
|
|
//Render the luminance of the current scene into a render target with mipmapping enabled
|
|
this.fsQuad.material = this.materialLuminance;
|
|
this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture;
|
|
renderer.setRenderTarget( this.currentLuminanceRT );
|
|
this.fsQuad.render( renderer ); //Use the new luminance values, the previous luminance and the frame delta to
|
|
//adapt the luminance over time.
|
|
|
|
this.fsQuad.material = this.materialAdaptiveLum;
|
|
this.materialAdaptiveLum.uniforms.delta.value = deltaTime;
|
|
this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture;
|
|
this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture;
|
|
renderer.setRenderTarget( this.luminanceRT );
|
|
this.fsQuad.render( renderer ); //Copy the new adapted luminance value so that it can be used by the next frame.
|
|
|
|
this.fsQuad.material = this.materialCopy;
|
|
this.copyUniforms.tDiffuse.value = this.luminanceRT.texture;
|
|
renderer.setRenderTarget( this.previousLuminanceRT );
|
|
this.fsQuad.render( renderer );
|
|
|
|
}
|
|
|
|
this.fsQuad.material = this.materialToneMap;
|
|
this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture;
|
|
|
|
if ( this.renderToScreen ) {
|
|
|
|
renderer.setRenderTarget( null );
|
|
this.fsQuad.render( renderer );
|
|
|
|
} else {
|
|
|
|
renderer.setRenderTarget( writeBuffer );
|
|
if ( this.clear ) renderer.clear();
|
|
this.fsQuad.render( renderer );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
reset() {
|
|
|
|
// render targets
|
|
if ( this.luminanceRT ) {
|
|
|
|
this.luminanceRT.dispose();
|
|
|
|
}
|
|
|
|
if ( this.currentLuminanceRT ) {
|
|
|
|
this.currentLuminanceRT.dispose();
|
|
|
|
}
|
|
|
|
if ( this.previousLuminanceRT ) {
|
|
|
|
this.previousLuminanceRT.dispose();
|
|
|
|
}
|
|
|
|
const pars = {
|
|
minFilter: THREE.LinearFilter,
|
|
magFilter: THREE.LinearFilter,
|
|
format: THREE.RGBAFormat
|
|
}; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450
|
|
|
|
this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
|
|
this.luminanceRT.texture.name = 'AdaptiveToneMappingPass.l';
|
|
this.luminanceRT.texture.generateMipmaps = false;
|
|
this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
|
|
this.previousLuminanceRT.texture.name = 'AdaptiveToneMappingPass.pl';
|
|
this.previousLuminanceRT.texture.generateMipmaps = false; // We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader
|
|
|
|
pars.minFilter = THREE.LinearMipmapLinearFilter;
|
|
pars.generateMipmaps = true;
|
|
this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
|
|
this.currentLuminanceRT.texture.name = 'AdaptiveToneMappingPass.cl';
|
|
|
|
if ( this.adaptive ) {
|
|
|
|
this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';
|
|
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
|
|
|
|
} //Put something in the adaptive luminance texture so that the scene can render initially
|
|
|
|
|
|
this.fsQuad.material = new THREE.MeshBasicMaterial( {
|
|
color: 0x777777
|
|
} );
|
|
this.materialLuminance.needsUpdate = true;
|
|
this.materialAdaptiveLum.needsUpdate = true;
|
|
this.materialToneMap.needsUpdate = true; // renderer.render( this.scene, this.camera, this.luminanceRT );
|
|
// renderer.render( this.scene, this.camera, this.previousLuminanceRT );
|
|
// renderer.render( this.scene, this.camera, this.currentLuminanceRT );
|
|
|
|
}
|
|
|
|
setAdaptive( adaptive ) {
|
|
|
|
if ( adaptive ) {
|
|
|
|
this.adaptive = true;
|
|
this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';
|
|
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
|
|
|
|
} else {
|
|
|
|
this.adaptive = false;
|
|
delete this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ];
|
|
this.materialToneMap.uniforms.luminanceMap.value = null;
|
|
|
|
}
|
|
|
|
this.materialToneMap.needsUpdate = true;
|
|
|
|
}
|
|
|
|
setAdaptionRate( rate ) {
|
|
|
|
if ( rate ) {
|
|
|
|
this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
setMinLuminance( minLum ) {
|
|
|
|
if ( minLum ) {
|
|
|
|
this.materialToneMap.uniforms.minLuminance.value = minLum;
|
|
this.materialAdaptiveLum.uniforms.minLuminance.value = minLum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
setMaxLuminance( maxLum ) {
|
|
|
|
if ( maxLum ) {
|
|
|
|
this.materialToneMap.uniforms.maxLuminance.value = maxLum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
setAverageLuminance( avgLum ) {
|
|
|
|
if ( avgLum ) {
|
|
|
|
this.materialToneMap.uniforms.averageLuminance.value = avgLum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
setMiddleGrey( middleGrey ) {
|
|
|
|
if ( middleGrey ) {
|
|
|
|
this.materialToneMap.uniforms.middleGrey.value = middleGrey;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dispose() {
|
|
|
|
if ( this.luminanceRT ) {
|
|
|
|
this.luminanceRT.dispose();
|
|
|
|
}
|
|
|
|
if ( this.previousLuminanceRT ) {
|
|
|
|
this.previousLuminanceRT.dispose();
|
|
|
|
}
|
|
|
|
if ( this.currentLuminanceRT ) {
|
|
|
|
this.currentLuminanceRT.dispose();
|
|
|
|
}
|
|
|
|
if ( this.materialLuminance ) {
|
|
|
|
this.materialLuminance.dispose();
|
|
|
|
}
|
|
|
|
if ( this.materialAdaptiveLum ) {
|
|
|
|
this.materialAdaptiveLum.dispose();
|
|
|
|
}
|
|
|
|
if ( this.materialCopy ) {
|
|
|
|
this.materialCopy.dispose();
|
|
|
|
}
|
|
|
|
if ( this.materialToneMap ) {
|
|
|
|
this.materialToneMap.dispose();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
THREE.AdaptiveToneMappingPass = AdaptiveToneMappingPass;
|
|
|
|
} )();
|
|
|