three 基础库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

2204 lines
54 KiB

( function () {
/**
* OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
* Supports reading as UnsignedByte, HalfFloat and Float type data texture.
*
* Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
* implementation, so I have preserved their copyright notices.
*/
// /*
// Copyright (c) 2014 - 2017, Syoyo Fujita
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the Syoyo Fujita nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// */
// // TinyEXR contains some OpenEXR code, which is licensed under ------------
// ///////////////////////////////////////////////////////////////////////////
// //
// // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// // Digital Ltd. LLC
// //
// // All rights reserved.
// //
// // Redistribution and use in source and binary forms, with or without
// // modification, are permitted provided that the following conditions are
// // met:
// // * Redistributions of source code must retain the above copyright
// // notice, this list of conditions and the following disclaimer.
// // * Redistributions in binary form must reproduce the above
// // copyright notice, this list of conditions and the following disclaimer
// // in the documentation and/or other materials provided with the
// // distribution.
// // * Neither the name of Industrial Light & Magic nor the names of
// // its contributors may be used to endorse or promote products derived
// // from this software without specific prior written permission.
// //
// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// //
// ///////////////////////////////////////////////////////////////////////////
// // End of OpenEXR license -------------------------------------------------
class EXRLoader extends THREE.DataTextureLoader {
constructor( manager ) {
super( manager );
this.type = THREE.FloatType;
}
parse( buffer ) {
const USHORT_RANGE = 1 << 16;
const BITMAP_SIZE = USHORT_RANGE >> 3;
const HUF_ENCBITS = 16; // literal (value) bit length
const HUF_DECBITS = 14; // decoding bit size (>= 8)
const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
const HUF_DECMASK = HUF_DECSIZE - 1;
const NBITS = 16;
const A_OFFSET = 1 << NBITS - 1;
const MOD_MASK = ( 1 << NBITS ) - 1;
const SHORT_ZEROCODE_RUN = 59;
const LONG_ZEROCODE_RUN = 63;
const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const ULONG_SIZE = 8;
const FLOAT32_SIZE = 4;
const INT32_SIZE = 4;
const INT16_SIZE = 2;
const INT8_SIZE = 1;
const STATIC_HUFFMAN = 0;
const DEFLATE = 1;
const UNKNOWN = 0;
const LOSSY_DCT = 1;
const RLE = 2;
const logBase = Math.pow( 2.7182818, 2.2 );
var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
function frexp( value ) {
if ( value === 0 ) return [ value, 0 ];
tmpDataView.setFloat64( 0, value );
var bits = tmpDataView.getUint32( 0 ) >>> 20 & 0x7FF;
if ( bits === 0 ) {
// denormal
tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
bits = ( tmpDataView.getUint32( 0 ) >>> 20 & 0x7FF ) - 64;
}
var exponent = bits - 1022;
var mantissa = ldexp( value, - exponent );
return [ mantissa, exponent ];
}
function ldexp( mantissa, exponent ) {
var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
var result = mantissa;
for ( var i = 0; i < steps; i ++ ) result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
return result;
}
function reverseLutFromBitmap( bitmap, lut ) {
var k = 0;
for ( var i = 0; i < USHORT_RANGE; ++ i ) {
if ( i == 0 || bitmap[ i >> 3 ] & 1 << ( i & 7 ) ) {
lut[ k ++ ] = i;
}
}
var n = k - 1;
while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
return n;
}
function hufClearDecTable( hdec ) {
for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
hdec[ i ] = {};
hdec[ i ].len = 0;
hdec[ i ].lit = 0;
hdec[ i ].p = null;
}
}
const getBitsReturn = {
l: 0,
c: 0,
lc: 0
};
function getBits( nBits, c, lc, uInt8Array, inOffset ) {
while ( lc < nBits ) {
c = c << 8 | parseUint8Array( uInt8Array, inOffset );
lc += 8;
}
lc -= nBits;
getBitsReturn.l = c >> lc & ( 1 << nBits ) - 1;
getBitsReturn.c = c;
getBitsReturn.lc = lc;
}
const hufTableBuffer = new Array( 59 );
function hufCanonicalCodeTable( hcode ) {
for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
var c = 0;
for ( var i = 58; i > 0; -- i ) {
var nc = c + hufTableBuffer[ i ] >> 1;
hufTableBuffer[ i ] = c;
c = nc;
}
for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
var l = hcode[ i ];
if ( l > 0 ) hcode[ i ] = l | hufTableBuffer[ l ] ++ << 6;
}
}
function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
var p = inOffset;
var c = 0;
var lc = 0;
for ( ; im <= iM; im ++ ) {
if ( p.value - inOffset.value > ni ) return false;
getBits( 6, c, lc, uInt8Array, p );
var l = getBitsReturn.l;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
hcode[ im ] = l;
if ( l == LONG_ZEROCODE_RUN ) {
if ( p.value - inOffset.value > ni ) {
throw 'Something wrong with hufUnpackEncTable';
}
getBits( 8, c, lc, uInt8Array, p );
var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
c = getBitsReturn.c;
lc = getBitsReturn.lc;
if ( im + zerun > iM + 1 ) {
throw 'Something wrong with hufUnpackEncTable';
}
while ( zerun -- ) hcode[ im ++ ] = 0;
im --;
} else if ( l >= SHORT_ZEROCODE_RUN ) {
var zerun = l - SHORT_ZEROCODE_RUN + 2;
if ( im + zerun > iM + 1 ) {
throw 'Something wrong with hufUnpackEncTable';
}
while ( zerun -- ) hcode[ im ++ ] = 0;
im --;
}
}
hufCanonicalCodeTable( hcode );
}
function hufLength( code ) {
return code & 63;
}
function hufCode( code ) {
return code >> 6;
}
function hufBuildDecTable( hcode, im, iM, hdecod ) {
for ( ; im <= iM; im ++ ) {
var c = hufCode( hcode[ im ] );
var l = hufLength( hcode[ im ] );
if ( c >> l ) {
throw 'Invalid table entry';
}
if ( l > HUF_DECBITS ) {
var pl = hdecod[ c >> l - HUF_DECBITS ];
if ( pl.len ) {
throw 'Invalid table entry';
}
pl.lit ++;
if ( pl.p ) {
var p = pl.p;
pl.p = new Array( pl.lit );
for ( var i = 0; i < pl.lit - 1; ++ i ) {
pl.p[ i ] = p[ i ];
}
} else {
pl.p = new Array( 1 );
}
pl.p[ pl.lit - 1 ] = im;
} else if ( l ) {
var plOffset = 0;
for ( var i = 1 << HUF_DECBITS - l; i > 0; i -- ) {
var pl = hdecod[ ( c << HUF_DECBITS - l ) + plOffset ];
if ( pl.len || pl.p ) {
throw 'Invalid table entry';
}
pl.len = l;
pl.lit = im;
plOffset ++;
}
}
}
return true;
}
const getCharReturn = {
c: 0,
lc: 0
};
function getChar( c, lc, uInt8Array, inOffset ) {
c = c << 8 | parseUint8Array( uInt8Array, inOffset );
lc += 8;
getCharReturn.c = c;
getCharReturn.lc = lc;
}
const getCodeReturn = {
c: 0,
lc: 0
};
function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
if ( po == rlc ) {
if ( lc < 8 ) {
getChar( c, lc, uInt8Array, inOffset );
c = getCharReturn.c;
lc = getCharReturn.lc;
}
lc -= 8;
var cs = c >> lc;
var cs = new Uint8Array( [ cs ] )[ 0 ];
if ( outBufferOffset.value + cs > outBufferEndOffset ) {
return false;
}
var s = outBuffer[ outBufferOffset.value - 1 ];
while ( cs -- > 0 ) {
outBuffer[ outBufferOffset.value ++ ] = s;
}
} else if ( outBufferOffset.value < outBufferEndOffset ) {
outBuffer[ outBufferOffset.value ++ ] = po;
} else {
return false;
}
getCodeReturn.c = c;
getCodeReturn.lc = lc;
}
function UInt16( value ) {
return value & 0xFFFF;
}
function Int16( value ) {
var ref = UInt16( value );
return ref > 0x7FFF ? ref - 0x10000 : ref;
}
const wdec14Return = {
a: 0,
b: 0
};
function wdec14( l, h ) {
var ls = Int16( l );
var hs = Int16( h );
var hi = hs;
var ai = ls + ( hi & 1 ) + ( hi >> 1 );
var as = ai;
var bs = ai - hi;
wdec14Return.a = as;
wdec14Return.b = bs;
}
function wdec16( l, h ) {
var m = UInt16( l );
var d = UInt16( h );
var bb = m - ( d >> 1 ) & MOD_MASK;
var aa = d + bb - A_OFFSET & MOD_MASK;
wdec14Return.a = aa;
wdec14Return.b = bb;
}
function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
var w14 = mx < 1 << 14;
var n = nx > ny ? ny : nx;
var p = 1;
var p2;
while ( p <= n ) p <<= 1;
p >>= 1;
p2 = p;
p >>= 1;
while ( p >= 1 ) {
var py = 0;
var ey = py + oy * ( ny - p2 );
var oy1 = oy * p;
var oy2 = oy * p2;
var ox1 = ox * p;
var ox2 = ox * p2;
var i00, i01, i10, i11;
for ( ; py <= ey; py += oy2 ) {
var px = py;
var ex = py + ox * ( nx - p2 );
for ( ; px <= ex; px += ox2 ) {
var p01 = px + ox1;
var p10 = px + oy1;
var p11 = p10 + ox1;
if ( w14 ) {
wdec14( buffer[ px + j ], buffer[ p10 + j ] );
i00 = wdec14Return.a;
i10 = wdec14Return.b;
wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
i01 = wdec14Return.a;
i11 = wdec14Return.b;
wdec14( i00, i01 );
buffer[ px + j ] = wdec14Return.a;
buffer[ p01 + j ] = wdec14Return.b;
wdec14( i10, i11 );
buffer[ p10 + j ] = wdec14Return.a;
buffer[ p11 + j ] = wdec14Return.b;
} else {
wdec16( buffer[ px + j ], buffer[ p10 + j ] );
i00 = wdec14Return.a;
i10 = wdec14Return.b;
wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
i01 = wdec14Return.a;
i11 = wdec14Return.b;
wdec16( i00, i01 );
buffer[ px + j ] = wdec14Return.a;
buffer[ p01 + j ] = wdec14Return.b;
wdec16( i10, i11 );
buffer[ p10 + j ] = wdec14Return.a;
buffer[ p11 + j ] = wdec14Return.b;
}
}
if ( nx & p ) {
var p10 = px + oy1;
if ( w14 ) wdec14( buffer[ px + j ], buffer[ p10 + j ] ); else wdec16( buffer[ px + j ], buffer[ p10 + j ] );
i00 = wdec14Return.a;
buffer[ p10 + j ] = wdec14Return.b;
buffer[ px + j ] = i00;
}
}
if ( ny & p ) {
var px = py;
var ex = py + ox * ( nx - p2 );
for ( ; px <= ex; px += ox2 ) {
var p01 = px + ox1;
if ( w14 ) wdec14( buffer[ px + j ], buffer[ p01 + j ] ); else wdec16( buffer[ px + j ], buffer[ p01 + j ] );
i00 = wdec14Return.a;
buffer[ p01 + j ] = wdec14Return.b;
buffer[ px + j ] = i00;
}
}
p2 = p;
p >>= 1;
}
return py;
}
function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
var c = 0;
var lc = 0;
var outBufferEndOffset = no;
var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
while ( inOffset.value < inOffsetEnd ) {
getChar( c, lc, uInt8Array, inOffset );
c = getCharReturn.c;
lc = getCharReturn.lc;
while ( lc >= HUF_DECBITS ) {
var index = c >> lc - HUF_DECBITS & HUF_DECMASK;
var pl = decodingTable[ index ];
if ( pl.len ) {
lc -= pl.len;
getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
if ( ! pl.p ) {
throw 'hufDecode issues';
}
var j;
for ( j = 0; j < pl.lit; j ++ ) {
var l = hufLength( encodingTable[ pl.p[ j ] ] );
while ( lc < l && inOffset.value < inOffsetEnd ) {
getChar( c, lc, uInt8Array, inOffset );
c = getCharReturn.c;
lc = getCharReturn.lc;
}
if ( lc >= l ) {
if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( c >> lc - l & ( 1 << l ) - 1 ) ) {
lc -= l;
getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
c = getCodeReturn.c;
lc = getCodeReturn.lc;
break;
}
}
}
if ( j == pl.lit ) {
throw 'hufDecode issues';
}
}
}
}
var i = 8 - ni & 7;
c >>= i;
lc -= i;
while ( lc > 0 ) {
var pl = decodingTable[ c << HUF_DECBITS - lc & HUF_DECMASK ];
if ( pl.len ) {
lc -= pl.len;
getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
c = getCodeReturn.c;
lc = getCodeReturn.lc;
} else {
throw 'hufDecode issues';
}
}
return true;
}
function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
var outOffset = {
value: 0
};
var initialInOffset = inOffset.value;
var im = parseUint32( inDataView, inOffset );
var iM = parseUint32( inDataView, inOffset );
inOffset.value += 4;
var nBits = parseUint32( inDataView, inOffset );
inOffset.value += 4;
if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
throw 'Something wrong with HUF_ENCSIZE';
}
var freq = new Array( HUF_ENCSIZE );
var hdec = new Array( HUF_DECSIZE );
hufClearDecTable( hdec );
var ni = nCompressed - ( inOffset.value - initialInOffset );
hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
throw 'Something wrong with hufUncompress';
}
hufBuildDecTable( freq, im, iM, hdec );
hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
}
function applyLut( lut, data, nData ) {
for ( var i = 0; i < nData; ++ i ) {
data[ i ] = lut[ data[ i ] ];
}
}
function predictor( source ) {
for ( var t = 1; t < source.length; t ++ ) {
var d = source[ t - 1 ] + source[ t ] - 128;
source[ t ] = d;
}
}
function interleaveScalar( source, out ) {
var t1 = 0;
var t2 = Math.floor( ( source.length + 1 ) / 2 );
var s = 0;
var stop = source.length - 1;
while ( true ) {
if ( s > stop ) break;
out[ s ++ ] = source[ t1 ++ ];
if ( s > stop ) break;
out[ s ++ ] = source[ t2 ++ ];
}
}
function decodeRunLength( source ) {
var size = source.byteLength;
var out = new Array();
var p = 0;
var reader = new DataView( source );
while ( size > 0 ) {
var l = reader.getInt8( p ++ );
if ( l < 0 ) {
var count = - l;
size -= count + 1;
for ( var i = 0; i < count; i ++ ) {
out.push( reader.getUint8( p ++ ) );
}
} else {
var count = l;
size -= 2;
var value = reader.getUint8( p ++ );
for ( var i = 0; i < count + 1; i ++ ) {
out.push( value );
}
}
}
return out;
}
function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
var dataView = new DataView( outBuffer.buffer );
var width = channelData[ cscSet.idx[ 0 ] ].width;
var height = channelData[ cscSet.idx[ 0 ] ].height;
var numComp = 3;
var numFullBlocksX = Math.floor( width / 8.0 );
var numBlocksX = Math.ceil( width / 8.0 );
var numBlocksY = Math.ceil( height / 8.0 );
var leftoverX = width - ( numBlocksX - 1 ) * 8;
var leftoverY = height - ( numBlocksY - 1 ) * 8;
var currAcComp = {
value: 0
};
var currDcComp = new Array( numComp );
var dctData = new Array( numComp );
var halfZigBlock = new Array( numComp );
var rowBlock = new Array( numComp );
var rowOffsets = new Array( numComp );
for ( let comp = 0; comp < numComp; ++ comp ) {
rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
currDcComp[ comp ] = comp < 1 ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
dctData[ comp ] = new Float32Array( 64 );
halfZigBlock[ comp ] = new Uint16Array( 64 );
rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
}
for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
var maxY = 8;
if ( blocky == numBlocksY - 1 ) maxY = leftoverY;
var maxX = 8;
for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
if ( blockx == numBlocksX - 1 ) maxX = leftoverX;
for ( let comp = 0; comp < numComp; ++ comp ) {
halfZigBlock[ comp ].fill( 0 ); // set block DC component
halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ]; // set block AC components
unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] ); // UnZigZag block to float
unZigZag( halfZigBlock[ comp ], dctData[ comp ] ); // decode float dct
dctInverse( dctData[ comp ] );
}
if ( numComp == 3 ) {
csc709Inverse( dctData );
}
for ( let comp = 0; comp < numComp; ++ comp ) {
convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
}
} // blockx
let offset = 0;
for ( let comp = 0; comp < numComp; ++ comp ) {
const type = channelData[ cscSet.idx[ comp ] ].type;
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
offset = rowOffsets[ comp ][ y ];
for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
const src = blockx * 64 + ( y & 0x7 ) * 8;
dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
offset += 8 * INT16_SIZE * type;
}
} // handle partial X blocks
if ( numFullBlocksX != numBlocksX ) {
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
const src = numFullBlocksX * 64 + ( y & 0x7 ) * 8;
for ( let x = 0; x < maxX; ++ x ) {
dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
}
}
}
} // comp
} // blocky
var halfRow = new Uint16Array( width );
var dataView = new DataView( outBuffer.buffer ); // convert channels back to float, if needed
for ( var comp = 0; comp < numComp; ++ comp ) {
channelData[ cscSet.idx[ comp ] ].decoded = true;
var type = channelData[ cscSet.idx[ comp ] ].type;
if ( channelData[ comp ].type != 2 ) continue;
for ( var y = 0; y < height; ++ y ) {
const offset = rowOffsets[ comp ][ y ];
for ( var x = 0; x < width; ++ x ) {
halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
}
for ( var x = 0; x < width; ++ x ) {
dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
}
}
}
}
function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
var acValue;
var dctComp = 1;
while ( dctComp < 64 ) {
acValue = acBuffer[ currAcComp.value ];
if ( acValue == 0xff00 ) {
dctComp = 64;
} else if ( acValue >> 8 == 0xff ) {
dctComp += acValue & 0xff;
} else {
halfZigBlock[ dctComp ] = acValue;
dctComp ++;
}
currAcComp.value ++;
}
}
function unZigZag( src, dst ) {
dst[ 0 ] = decodeFloat16( src[ 0 ] );
dst[ 1 ] = decodeFloat16( src[ 1 ] );
dst[ 2 ] = decodeFloat16( src[ 5 ] );
dst[ 3 ] = decodeFloat16( src[ 6 ] );
dst[ 4 ] = decodeFloat16( src[ 14 ] );
dst[ 5 ] = decodeFloat16( src[ 15 ] );
dst[ 6 ] = decodeFloat16( src[ 27 ] );
dst[ 7 ] = decodeFloat16( src[ 28 ] );
dst[ 8 ] = decodeFloat16( src[ 2 ] );
dst[ 9 ] = decodeFloat16( src[ 4 ] );
dst[ 10 ] = decodeFloat16( src[ 7 ] );
dst[ 11 ] = decodeFloat16( src[ 13 ] );
dst[ 12 ] = decodeFloat16( src[ 16 ] );
dst[ 13 ] = decodeFloat16( src[ 26 ] );
dst[ 14 ] = decodeFloat16( src[ 29 ] );
dst[ 15 ] = decodeFloat16( src[ 42 ] );
dst[ 16 ] = decodeFloat16( src[ 3 ] );
dst[ 17 ] = decodeFloat16( src[ 8 ] );
dst[ 18 ] = decodeFloat16( src[ 12 ] );
dst[ 19 ] = decodeFloat16( src[ 17 ] );
dst[ 20 ] = decodeFloat16( src[ 25 ] );
dst[ 21 ] = decodeFloat16( src[ 30 ] );
dst[ 22 ] = decodeFloat16( src[ 41 ] );
dst[ 23 ] = decodeFloat16( src[ 43 ] );
dst[ 24 ] = decodeFloat16( src[ 9 ] );
dst[ 25 ] = decodeFloat16( src[ 11 ] );
dst[ 26 ] = decodeFloat16( src[ 18 ] );
dst[ 27 ] = decodeFloat16( src[ 24 ] );
dst[ 28 ] = decodeFloat16( src[ 31 ] );
dst[ 29 ] = decodeFloat16( src[ 40 ] );
dst[ 30 ] = decodeFloat16( src[ 44 ] );
dst[ 31 ] = decodeFloat16( src[ 53 ] );
dst[ 32 ] = decodeFloat16( src[ 10 ] );
dst[ 33 ] = decodeFloat16( src[ 19 ] );
dst[ 34 ] = decodeFloat16( src[ 23 ] );
dst[ 35 ] = decodeFloat16( src[ 32 ] );
dst[ 36 ] = decodeFloat16( src[ 39 ] );
dst[ 37 ] = decodeFloat16( src[ 45 ] );
dst[ 38 ] = decodeFloat16( src[ 52 ] );
dst[ 39 ] = decodeFloat16( src[ 54 ] );
dst[ 40 ] = decodeFloat16( src[ 20 ] );
dst[ 41 ] = decodeFloat16( src[ 22 ] );
dst[ 42 ] = decodeFloat16( src[ 33 ] );
dst[ 43 ] = decodeFloat16( src[ 38 ] );
dst[ 44 ] = decodeFloat16( src[ 46 ] );
dst[ 45 ] = decodeFloat16( src[ 51 ] );
dst[ 46 ] = decodeFloat16( src[ 55 ] );
dst[ 47 ] = decodeFloat16( src[ 60 ] );
dst[ 48 ] = decodeFloat16( src[ 21 ] );
dst[ 49 ] = decodeFloat16( src[ 34 ] );
dst[ 50 ] = decodeFloat16( src[ 37 ] );
dst[ 51 ] = decodeFloat16( src[ 47 ] );
dst[ 52 ] = decodeFloat16( src[ 50 ] );
dst[ 53 ] = decodeFloat16( src[ 56 ] );
dst[ 54 ] = decodeFloat16( src[ 59 ] );
dst[ 55 ] = decodeFloat16( src[ 61 ] );
dst[ 56 ] = decodeFloat16( src[ 35 ] );
dst[ 57 ] = decodeFloat16( src[ 36 ] );
dst[ 58 ] = decodeFloat16( src[ 48 ] );
dst[ 59 ] = decodeFloat16( src[ 49 ] );
dst[ 60 ] = decodeFloat16( src[ 57 ] );
dst[ 61 ] = decodeFloat16( src[ 58 ] );
dst[ 62 ] = decodeFloat16( src[ 62 ] );
dst[ 63 ] = decodeFloat16( src[ 63 ] );
}
function dctInverse( data ) {
const a = 0.5 * Math.cos( 3.14159 / 4.0 );
const b = 0.5 * Math.cos( 3.14159 / 16.0 );
const c = 0.5 * Math.cos( 3.14159 / 8.0 );
const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
var alpha = new Array( 4 );
var beta = new Array( 4 );
var theta = new Array( 4 );
var gamma = new Array( 4 );
for ( var row = 0; row < 8; ++ row ) {
var rowPtr = row * 8;
alpha[ 0 ] = c * data[ rowPtr + 2 ];
alpha[ 1 ] = f * data[ rowPtr + 2 ];
alpha[ 2 ] = c * data[ rowPtr + 6 ];
alpha[ 3 ] = f * data[ rowPtr + 6 ];
beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
}
for ( var column = 0; column < 8; ++ column ) {
alpha[ 0 ] = c * data[ 16 + column ];
alpha[ 1 ] = f * data[ 16 + column ];
alpha[ 2 ] = c * data[ 48 + column ];
alpha[ 3 ] = f * data[ 48 + column ];
beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
}
}
function csc709Inverse( data ) {
for ( var i = 0; i < 64; ++ i ) {
var y = data[ 0 ][ i ];
var cb = data[ 1 ][ i ];
var cr = data[ 2 ][ i ];
data[ 0 ][ i ] = y + 1.5747 * cr;
data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
data[ 2 ][ i ] = y + 1.8556 * cb;
}
}
function convertToHalf( src, dst, idx ) {
for ( var i = 0; i < 64; ++ i ) {
dst[ idx + i ] = THREE.DataUtils.toHalfFloat( toLinear( src[ i ] ) );
}
}
function toLinear( float ) {
if ( float <= 1 ) {
return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
} else {
return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
}
}
function uncompressRAW( info ) {
return new DataView( info.array.buffer, info.offset.value, info.size );
}
function uncompressRLE( info ) {
var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
var tmpBuffer = new Uint8Array( rawBuffer.length );
predictor( rawBuffer ); // revert predictor
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
return new DataView( tmpBuffer.buffer );
}
function uncompressZIP( info ) {
var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
if ( typeof fflate === 'undefined' ) {
console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
}
var rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
var tmpBuffer = new Uint8Array( rawBuffer.length );
predictor( rawBuffer ); // revert predictor
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
return new DataView( tmpBuffer.buffer );
}
function uncompressPIZ( info ) {
var inDataView = info.viewer;
var inOffset = {
value: info.offset.value
};
var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
var outBuffer = new Uint16Array( tmpBufSize );
var bitmap = new Uint8Array( BITMAP_SIZE ); // Setup channel info
var outBufferEnd = 0;
var pizChannelData = new Array( info.channels );
for ( var i = 0; i < info.channels; i ++ ) {
pizChannelData[ i ] = {};
pizChannelData[ i ][ 'start' ] = outBufferEnd;
pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
pizChannelData[ i ][ 'nx' ] = info.width;
pizChannelData[ i ][ 'ny' ] = info.lines;
pizChannelData[ i ][ 'size' ] = info.type;
outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
} // Read range compression data
var minNonZero = parseUint16( inDataView, inOffset );
var maxNonZero = parseUint16( inDataView, inOffset );
if ( maxNonZero >= BITMAP_SIZE ) {
throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
}
if ( minNonZero <= maxNonZero ) {
for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
}
} // Reverse LUT
var lut = new Uint16Array( USHORT_RANGE );
var maxValue = reverseLutFromBitmap( bitmap, lut );
var length = parseUint32( inDataView, inOffset ); // Huffman decoding
hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd ); // Wavelet decoding
for ( var i = 0; i < info.channels; ++ i ) {
var cd = pizChannelData[ i ];
for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
wav2Decode( outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue );
}
} // Expand the pixel data to their original range
applyLut( lut, outBuffer, outBufferEnd ); // Rearrange the pixel data into the format expected by the caller.
var tmpOffset = 0;
var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
for ( var y = 0; y < info.lines; y ++ ) {
for ( var c = 0; c < info.channels; c ++ ) {
var cd = pizChannelData[ c ];
var n = cd.nx * cd.size;
var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
tmpBuffer.set( cp, tmpOffset );
tmpOffset += n * INT16_SIZE;
cd.end += n;
}
}
return new DataView( tmpBuffer.buffer );
}
function uncompressPXR( info ) {
var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
if ( typeof fflate === 'undefined' ) {
console.error( 'THREE.EXRLoader: External library fflate.min.js required.' );
}
var rawBuffer = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
const sz = info.lines * info.channels * info.width;
const tmpBuffer = info.type == 1 ? new Uint16Array( sz ) : new Uint32Array( sz );
let tmpBufferEnd = 0;
let writePtr = 0;
const ptr = new Array( 4 );
for ( let y = 0; y < info.lines; y ++ ) {
for ( let c = 0; c < info.channels; c ++ ) {
let pixel = 0;
switch ( info.type ) {
case 1:
ptr[ 0 ] = tmpBufferEnd;
ptr[ 1 ] = ptr[ 0 ] + info.width;
tmpBufferEnd = ptr[ 1 ] + info.width;
for ( let j = 0; j < info.width; ++ j ) {
const diff = rawBuffer[ ptr[ 0 ] ++ ] << 8 | rawBuffer[ ptr[ 1 ] ++ ];
pixel += diff;
tmpBuffer[ writePtr ] = pixel;
writePtr ++;
}
break;
case 2:
ptr[ 0 ] = tmpBufferEnd;
ptr[ 1 ] = ptr[ 0 ] + info.width;
ptr[ 2 ] = ptr[ 1 ] + info.width;
tmpBufferEnd = ptr[ 2 ] + info.width;
for ( let j = 0; j < info.width; ++ j ) {
const diff = rawBuffer[ ptr[ 0 ] ++ ] << 24 | rawBuffer[ ptr[ 1 ] ++ ] << 16 | rawBuffer[ ptr[ 2 ] ++ ] << 8;
pixel += diff;
tmpBuffer[ writePtr ] = pixel;
writePtr ++;
}
break;
}
}
}
return new DataView( tmpBuffer.buffer );
}
function uncompressDWA( info ) {
var inDataView = info.viewer;
var inOffset = {
value: info.offset.value
};
var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) ); // Read compression header information
var dwaHeader = {
version: parseInt64( inDataView, inOffset ),
unknownUncompressedSize: parseInt64( inDataView, inOffset ),
unknownCompressedSize: parseInt64( inDataView, inOffset ),
acCompressedSize: parseInt64( inDataView, inOffset ),
dcCompressedSize: parseInt64( inDataView, inOffset ),
rleCompressedSize: parseInt64( inDataView, inOffset ),
rleUncompressedSize: parseInt64( inDataView, inOffset ),
rleRawSize: parseInt64( inDataView, inOffset ),
totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
acCompression: parseInt64( inDataView, inOffset )
};
if ( dwaHeader.version < 2 ) throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported'; // Read channel ruleset information
var channelRules = new Array();
var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
while ( ruleSize > 0 ) {
var name = parseNullTerminatedString( inDataView.buffer, inOffset );
var value = parseUint8( inDataView, inOffset );
var compression = value >> 2 & 3;
var csc = ( value >> 4 ) - 1;
var index = new Int8Array( [ csc ] )[ 0 ];
var type = parseUint8( inDataView, inOffset );
channelRules.push( {
name: name,
index: index,
type: type,
compression: compression
} );
ruleSize -= name.length + 3;
} // Classify channels
var channels = EXRHeader.channels;
var channelData = new Array( info.channels );
for ( var i = 0; i < info.channels; ++ i ) {
var cd = channelData[ i ] = {};
var channel = channels[ i ];
cd.name = channel.name;
cd.compression = UNKNOWN;
cd.decoded = false;
cd.type = channel.pixelType;
cd.pLinear = channel.pLinear;
cd.width = info.width;
cd.height = info.lines;
}
var cscSet = {
idx: new Array( 3 )
};
for ( var offset = 0; offset < info.channels; ++ offset ) {
var cd = channelData[ offset ];
for ( var i = 0; i < channelRules.length; ++ i ) {
var rule = channelRules[ i ];
if ( cd.name == rule.name ) {
cd.compression = rule.compression;
if ( rule.index >= 0 ) {
cscSet.idx[ rule.index ] = offset;
}
cd.offset = offset;
}
}
} // Read DCT - AC component data
if ( dwaHeader.acCompressedSize > 0 ) {
switch ( dwaHeader.acCompression ) {
case STATIC_HUFFMAN:
var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
break;
case DEFLATE:
var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
var data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
var acBuffer = new Uint16Array( data.buffer );
inOffset.value += dwaHeader.totalAcUncompressedCount;
break;
}
} // Read DCT - DC component data
if ( dwaHeader.dcCompressedSize > 0 ) {
var zlibInfo = {
array: info.array,
offset: inOffset,
size: dwaHeader.dcCompressedSize
};
var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
inOffset.value += dwaHeader.dcCompressedSize;
} // Read RLE compressed data
if ( dwaHeader.rleRawSize > 0 ) {
var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
var data = fflate.unzlibSync( compressed ); // eslint-disable-line no-undef
var rleBuffer = decodeRunLength( data.buffer );
inOffset.value += dwaHeader.rleCompressedSize;
} // Prepare outbuffer data offset
var outBufferEnd = 0;
var rowOffsets = new Array( channelData.length );
for ( var i = 0; i < rowOffsets.length; ++ i ) {
rowOffsets[ i ] = new Array();
}
for ( var y = 0; y < info.lines; ++ y ) {
for ( var chan = 0; chan < channelData.length; ++ chan ) {
rowOffsets[ chan ].push( outBufferEnd );
outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
}
} // Lossy DCT decode RGB channels
lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer ); // Decode other channels
for ( var i = 0; i < channelData.length; ++ i ) {
var cd = channelData[ i ];
if ( cd.decoded ) continue;
switch ( cd.compression ) {
case RLE:
var row = 0;
var rleOffset = 0;
for ( var y = 0; y < info.lines; ++ y ) {
var rowOffsetBytes = rowOffsets[ i ][ row ];
for ( var x = 0; x < cd.width; ++ x ) {
for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
}
rleOffset ++;
}
row ++;
}
break;
case LOSSY_DCT: // skip
default:
throw 'EXRLoader.parse: unsupported channel compression';
}
}
return new DataView( outBuffer.buffer );
}
function parseNullTerminatedString( buffer, offset ) {
var uintBuffer = new Uint8Array( buffer );
var endOffset = 0;
while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
endOffset += 1;
}
var stringValue = new TextDecoder().decode( uintBuffer.slice( offset.value, offset.value + endOffset ) );
offset.value = offset.value + endOffset + 1;
return stringValue;
}
function parseFixedLengthString( buffer, offset, size ) {
var stringValue = new TextDecoder().decode( new Uint8Array( buffer ).slice( offset.value, offset.value + size ) );
offset.value = offset.value + size;
return stringValue;
}
function parseUlong( dataView, offset ) {
var uLong = dataView.getUint32( 0, true );
offset.value = offset.value + ULONG_SIZE;
return uLong;
}
function parseRational( dataView, offset ) {
var x = parseInt32( dataView, offset );
var y = parseUint32( dataView, offset );
return [ x, y ];
}
function parseTimecode( dataView, offset ) {
var x = parseUint32( dataView, offset );
var y = parseUint32( dataView, offset );
return [ x, y ];
}
function parseInt32( dataView, offset ) {
var Int32 = dataView.getInt32( offset.value, true );
offset.value = offset.value + INT32_SIZE;
return Int32;
}
function parseUint32( dataView, offset ) {
var Uint32 = dataView.getUint32( offset.value, true );
offset.value = offset.value + INT32_SIZE;
return Uint32;
}
function parseUint8Array( uInt8Array, offset ) {
var Uint8 = uInt8Array[ offset.value ];
offset.value = offset.value + INT8_SIZE;
return Uint8;
}
function parseUint8( dataView, offset ) {
var Uint8 = dataView.getUint8( offset.value );
offset.value = offset.value + INT8_SIZE;
return Uint8;
}
function parseInt64( dataView, offset ) {
var int = Number( dataView.getBigInt64( offset.value, true ) );
offset.value += ULONG_SIZE;
return int;
}
function parseFloat32( dataView, offset ) {
var float = dataView.getFloat32( offset.value, true );
offset.value += FLOAT32_SIZE;
return float;
}
function decodeFloat32( dataView, offset ) {
return THREE.DataUtils.toHalfFloat( parseFloat32( dataView, offset ) );
} // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
function decodeFloat16( binary ) {
var exponent = ( binary & 0x7C00 ) >> 10,
fraction = binary & 0x03FF;
return ( binary >> 15 ? - 1 : 1 ) * ( exponent ? exponent === 0x1F ? fraction ? NaN : Infinity : Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 ) : 6.103515625e-5 * ( fraction / 0x400 ) );
}
function parseUint16( dataView, offset ) {
var Uint16 = dataView.getUint16( offset.value, true );
offset.value += INT16_SIZE;
return Uint16;
}
function parseFloat16( buffer, offset ) {
return decodeFloat16( parseUint16( buffer, offset ) );
}
function parseChlist( dataView, buffer, offset, size ) {
var startOffset = offset.value;
var channels = [];
while ( offset.value < startOffset + size - 1 ) {
var name = parseNullTerminatedString( buffer, offset );
var pixelType = parseInt32( dataView, offset );
var pLinear = parseUint8( dataView, offset );
offset.value += 3; // reserved, three chars
var xSampling = parseInt32( dataView, offset );
var ySampling = parseInt32( dataView, offset );
channels.push( {
name: name,
pixelType: pixelType,
pLinear: pLinear,
xSampling: xSampling,
ySampling: ySampling
} );
}
offset.value += 1;
return channels;
}
function parseChromaticities( dataView, offset ) {
var redX = parseFloat32( dataView, offset );
var redY = parseFloat32( dataView, offset );
var greenX = parseFloat32( dataView, offset );
var greenY = parseFloat32( dataView, offset );
var blueX = parseFloat32( dataView, offset );
var blueY = parseFloat32( dataView, offset );
var whiteX = parseFloat32( dataView, offset );
var whiteY = parseFloat32( dataView, offset );
return {
redX: redX,
redY: redY,
greenX: greenX,
greenY: greenY,
blueX: blueX,
blueY: blueY,
whiteX: whiteX,
whiteY: whiteY
};
}
function parseCompression( dataView, offset ) {
var compressionCodes = [ 'NO_COMPRESSION', 'RLE_COMPRESSION', 'ZIPS_COMPRESSION', 'ZIP_COMPRESSION', 'PIZ_COMPRESSION', 'PXR24_COMPRESSION', 'B44_COMPRESSION', 'B44A_COMPRESSION', 'DWAA_COMPRESSION', 'DWAB_COMPRESSION' ];
var compression = parseUint8( dataView, offset );
return compressionCodes[ compression ];
}
function parseBox2i( dataView, offset ) {
var xMin = parseUint32( dataView, offset );
var yMin = parseUint32( dataView, offset );
var xMax = parseUint32( dataView, offset );
var yMax = parseUint32( dataView, offset );
return {
xMin: xMin,
yMin: yMin,
xMax: xMax,
yMax: yMax
};
}
function parseLineOrder( dataView, offset ) {
var lineOrders = [ 'INCREASING_Y' ];
var lineOrder = parseUint8( dataView, offset );
return lineOrders[ lineOrder ];
}
function parseV2f( dataView, offset ) {
var x = parseFloat32( dataView, offset );
var y = parseFloat32( dataView, offset );
return [ x, y ];
}
function parseV3f( dataView, offset ) {
var x = parseFloat32( dataView, offset );
var y = parseFloat32( dataView, offset );
var z = parseFloat32( dataView, offset );
return [ x, y, z ];
}
function parseValue( dataView, buffer, offset, type, size ) {
if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
return parseFixedLengthString( buffer, offset, size );
} else if ( type === 'chlist' ) {
return parseChlist( dataView, buffer, offset, size );
} else if ( type === 'chromaticities' ) {
return parseChromaticities( dataView, offset );
} else if ( type === 'compression' ) {
return parseCompression( dataView, offset );
} else if ( type === 'box2i' ) {
return parseBox2i( dataView, offset );
} else if ( type === 'lineOrder' ) {
return parseLineOrder( dataView, offset );
} else if ( type === 'float' ) {
return parseFloat32( dataView, offset );
} else if ( type === 'v2f' ) {
return parseV2f( dataView, offset );
} else if ( type === 'v3f' ) {
return parseV3f( dataView, offset );
} else if ( type === 'int' ) {
return parseInt32( dataView, offset );
} else if ( type === 'rational' ) {
return parseRational( dataView, offset );
} else if ( type === 'timecode' ) {
return parseTimecode( dataView, offset );
} else if ( type === 'preview' ) {
offset.value += size;
return 'skipped';
} else {
offset.value += size;
return undefined;
}
}
var bufferDataView = new DataView( buffer );
var uInt8Array = new Uint8Array( buffer );
var EXRHeader = {};
bufferDataView.getUint32( 0, true ); // magic
bufferDataView.getUint8( 4, true ); // versionByteZero
bufferDataView.getUint8( 5, true ); // fullMask
// start of header
var offset = {
value: 8
}; // start at 8, after magic stuff
var keepReading = true;
while ( keepReading ) {
var attributeName = parseNullTerminatedString( buffer, offset );
if ( attributeName == 0 ) {
keepReading = false;
} else {
var attributeType = parseNullTerminatedString( buffer, offset );
var attributeSize = parseUint32( bufferDataView, offset );
var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
if ( attributeValue === undefined ) {
console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${attributeType}\'.` );
} else {
EXRHeader[ attributeName ] = attributeValue;
}
}
} // offsets
var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
var uncompress;
var scanlineBlockSize;
switch ( EXRHeader.compression ) {
case 'NO_COMPRESSION':
scanlineBlockSize = 1;
uncompress = uncompressRAW;
break;
case 'RLE_COMPRESSION':
scanlineBlockSize = 1;
uncompress = uncompressRLE;
break;
case 'ZIPS_COMPRESSION':
scanlineBlockSize = 1;
uncompress = uncompressZIP;
break;
case 'ZIP_COMPRESSION':
scanlineBlockSize = 16;
uncompress = uncompressZIP;
break;
case 'PIZ_COMPRESSION':
scanlineBlockSize = 32;
uncompress = uncompressPIZ;
break;
case 'PXR24_COMPRESSION':
scanlineBlockSize = 16;
uncompress = uncompressPXR;
break;
case 'DWAA_COMPRESSION':
scanlineBlockSize = 32;
uncompress = uncompressDWA;
break;
case 'DWAB_COMPRESSION':
scanlineBlockSize = 256;
uncompress = uncompressDWA;
break;
default:
throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
}
var size_t;
var getValue; // mixed pixelType not supported
var pixelType = EXRHeader.channels[ 0 ].pixelType;
if ( pixelType === 1 ) {
// half
switch ( this.type ) {
case THREE.UnsignedByteType:
case THREE.FloatType:
getValue = parseFloat16;
size_t = INT16_SIZE;
break;
case THREE.HalfFloatType:
getValue = parseUint16;
size_t = INT16_SIZE;
break;
}
} else if ( pixelType === 2 ) {
// float
switch ( this.type ) {
case THREE.UnsignedByteType:
case THREE.FloatType:
getValue = parseFloat32;
size_t = FLOAT32_SIZE;
break;
case THREE.HalfFloatType:
getValue = decodeFloat32;
size_t = FLOAT32_SIZE;
}
} else {
throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
}
var numBlocks = dataWindowHeight / scanlineBlockSize;
for ( var i = 0; i < numBlocks; i ++ ) {
parseUlong( bufferDataView, offset ); // scanlineOffset
} // we should be passed the scanline offset table, start reading pixel data
var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1; // Firefox only supports RGBA (half) float textures
// var numChannels = EXRHeader.channels.length;
var numChannels = 4;
var size = width * height * numChannels; // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
switch ( this.type ) {
case THREE.UnsignedByteType:
case THREE.FloatType:
var byteArray = new Float32Array( size );
if ( EXRHeader.channels.length < numChannels ) {
byteArray.fill( 1, 0, size );
}
break;
case THREE.HalfFloatType:
var byteArray = new Uint16Array( size );
if ( EXRHeader.channels.length < numChannels ) {
byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
}
break;
default:
console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
break;
}
var channelOffsets = {
R: 0,
G: 1,
B: 2,
A: 3
};
var compressionInfo = {
size: 0,
width: width,
lines: scanlineBlockSize,
offset: offset,
array: uInt8Array,
viewer: bufferDataView,
type: pixelType,
channels: EXRHeader.channels.length
};
var line;
var size;
var viewer;
var tmpOffset = {
value: 0
};
for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
line = parseUint32( bufferDataView, offset ); // line_no
size = parseUint32( bufferDataView, offset ); // data_len
compressionInfo.lines = line + scanlineBlockSize > height ? height - line : scanlineBlockSize;
compressionInfo.offset = offset;
compressionInfo.size = size;
viewer = uncompress( compressionInfo );
offset.value += size;
for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
var true_y = line_y + scanlineBlockIdx * scanlineBlockSize;
if ( true_y >= height ) break;
for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
for ( var x = 0; x < width; x ++ ) {
var idx = line_y * ( EXRHeader.channels.length * width ) + channelID * width + x;
tmpOffset.value = idx * size_t;
var val = getValue( viewer, tmpOffset );
byteArray[ ( height - 1 - true_y ) * ( width * numChannels ) + x * numChannels + cOff ] = val;
}
}
}
}
if ( this.type === THREE.UnsignedByteType ) {
let v, i;
const size = byteArray.length;
const RGBEArray = new Uint8Array( size );
for ( let h = 0; h < height; ++ h ) {
for ( let w = 0; w < width; ++ w ) {
i = h * width * 4 + w * 4;
const red = byteArray[ i ];
const green = byteArray[ i + 1 ];
const blue = byteArray[ i + 2 ];
v = red > green ? red : green;
v = blue > v ? blue : v;
if ( v < 1e-32 ) {
RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
} else {
const res = frexp( v );
v = res[ 0 ] * 256 / v;
RGBEArray[ i ] = red * v;
RGBEArray[ i + 1 ] = green * v;
RGBEArray[ i + 2 ] = blue * v;
RGBEArray[ i + 3 ] = res[ 1 ] + 128;
}
}
}
byteArray = RGBEArray;
}
const format = this.type === THREE.UnsignedByteType ? THREE.RGBEFormat : numChannels === 4 ? THREE.RGBAFormat : THREE.RGBFormat;
return {
header: EXRHeader,
width: width,
height: height,
data: byteArray,
format: format,
type: this.type
};
}
setDataType( value ) {
this.type = value;
return this;
}
load( url, onLoad, onProgress, onError ) {
function onLoadCallback( texture, texData ) {
switch ( texture.type ) {
case THREE.UnsignedByteType:
texture.encoding = THREE.RGBEEncoding;
texture.minFilter = THREE.NearestFilter;
texture.magFilter = THREE.NearestFilter;
texture.generateMipmaps = false;
texture.flipY = false;
break;
case THREE.FloatType:
case THREE.HalfFloatType:
texture.encoding = THREE.LinearEncoding;
texture.minFilter = THREE.LinearFilter;
texture.magFilter = THREE.LinearFilter;
texture.generateMipmaps = false;
texture.flipY = false;
break;
}
if ( onLoad ) onLoad( texture, texData );
}
return super.load( url, onLoadCallback, onProgress, onError );
}
}
THREE.EXRLoader = EXRLoader;
} )();