three 基础库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

3172 lines
79 KiB

/**
* @author Rich Tibbett / https://github.com/richtr
* @author mrdoob / http://mrdoob.com/
* @author Tony Parisi / http://www.tonyparisi.com/
* @author Takahiro / https://github.com/takahirox
* @author Don McCurdy / https://www.donmccurdy.com
*/
THREE.GLTFLoader = ( function () {
function GLTFLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
this.dracoLoader = null;
}
GLTFLoader.prototype = {
constructor: GLTFLoader,
crossOrigin: 'Anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = this.path !== undefined ? this.path : THREE.LoaderUtils.extractUrlBase( url );
var loader = new THREE.FileLoader( scope.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( data ) {
try {
scope.parse( data, path, onLoad, onError );
} catch ( e ) {
if ( onError !== undefined ) {
onError( e );
} else {
throw e;
}
}
}, onProgress, onError );
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
},
setDRACOLoader: function ( dracoLoader ) {
this.dracoLoader = dracoLoader;
return this;
},
parse: function ( data, path, onLoad, onError ) {
var content;
var extensions = {};
if ( typeof data === 'string' ) {
content = data;
} else {
var magic = THREE.LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;
} else {
content = THREE.LoaderUtils.decodeText( new Uint8Array( data ) );
}
}
var json = JSON.parse( content );
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.' ) );
return;
}
if ( json.extensionsUsed ) {
for ( var i = 0; i < json.extensionsUsed.length; ++ i ) {
var extensionName = json.extensionsUsed[ i ];
var extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_LIGHTS:
extensions[ extensionName ] = new GLTFLightsExtension( json );
break;
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension( json );
break;
case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.MSFT_TEXTURE_DDS:
extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] = new GLTFTextureDDSExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
var parser = new GLTFParser( json, extensions, {
path: path || this.path || '',
crossOrigin: this.crossOrigin,
manager: this.manager
} );
parser.parse( function ( scene, scenes, cameras, animations, json ) {
var glTF = {
scene: scene,
scenes: scenes,
cameras: cameras,
animations: animations,
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, glTF, json );
onLoad( glTF );
}, onError );
}
};
/* GLTFREGISTRY */
function GLTFRegistry() {
var objects = {};
return {
get: function ( key ) {
return objects[ key ];
},
add: function ( key, object ) {
objects[ key ] = object;
},
remove: function ( key ) {
delete objects[ key ];
},
removeAll: function () {
objects = {};
}
};
}
/*********************************/
/********** EXTENSIONS ***********/
/*********************************/
var EXTENSIONS = {
KHR_BINARY_GLTF: 'KHR_binary_glTF',
KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
KHR_LIGHTS: 'KHR_lights',
KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
};
/**
* DDS Texture Extension
*
* Specification:
* https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
*
*/
function GLTFTextureDDSExtension() {
if ( ! THREE.DDSLoader ) {
throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader' );
}
this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
this.ddsLoader = new THREE.DDSLoader();
}
/**
* Lights Extension
*
* Specification: PENDING
*/
function GLTFLightsExtension( json ) {
this.name = EXTENSIONS.KHR_LIGHTS;
this.lights = {};
var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS ] ) || {};
var lights = extension.lights || {};
for ( var lightId in lights ) {
var light = lights[ lightId ];
var lightNode;
var color = new THREE.Color().fromArray( light.color );
switch ( light.type ) {
case 'directional':
lightNode = new THREE.DirectionalLight( color );
lightNode.target.position.set( 0, 0, 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new THREE.PointLight( color );
break;
case 'spot':
lightNode = new THREE.SpotLight( color );
// Handle spotlight properties.
light.spot = light.spot || {};
light.spot.innerConeAngle = light.spot.innerConeAngle !== undefined ? light.spot.innerConeAngle : 0;
light.spot.outerConeAngle = light.spot.outerConeAngle !== undefined ? light.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = light.spot.outerConeAngle;
lightNode.penumbra = 1.0 - light.spot.innerConeAngle / light.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, 1 );
lightNode.add( lightNode.target );
break;
case 'ambient':
lightNode = new THREE.AmbientLight( color );
break;
}
if ( lightNode ) {
lightNode.decay = 2;
if ( light.intensity !== undefined ) {
lightNode.intensity = light.intensity;
}
lightNode.name = light.name || ( 'light_' + lightId );
this.lights[ lightId ] = lightNode;
}
}
}
/**
* Unlit Materials Extension (pending)
*
* PR: https://github.com/KhronosGroup/glTF/pull/1163
*/
function GLTFMaterialsUnlitExtension( json ) {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
GLTFMaterialsUnlitExtension.prototype.getMaterialType = function ( material ) {
return THREE.MeshBasicMaterial;
};
GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, material, parser ) {
var pending = [];
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
var metallicRoughness = material.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) );
}
}
return Promise.all( pending );
};
/* BINARY EXTENSION */
var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF';
var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };
function GLTFBinaryExtension( data ) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
this.header = {
magic: THREE.LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
version: headerView.getUint32( 4, true ),
length: headerView.getUint32( 8, true )
};
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
} else if ( this.header.version < 2.0 ) {
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.' );
}
var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
var chunkIndex = 0;
while ( chunkIndex < chunkView.byteLength ) {
var chunkLength = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
var chunkType = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
this.content = THREE.LoaderUtils.decodeText( contentArray );
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice( byteOffset, byteOffset + chunkLength );
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if ( this.content === null ) {
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
}
}
/**
* DRACO Mesh Compression Extension
*
* Specification: https://github.com/KhronosGroup/glTF/pull/874
*/
function GLTFDracoMeshCompressionExtension ( json, dracoLoader ) {
if ( ! dracoLoader ) {
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
}
GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) {
var json = this.json;
var dracoLoader = this.dracoLoader;
var bufferViewIndex = primitive.extensions[ this.name ].bufferView;
var gltfAttributeMap = primitive.extensions[ this.name ].attributes;
var threeAttributeMap = {};
var attributeNormalizedMap = {};
var attributeTypeMap = {};
for ( var attributeName in gltfAttributeMap ) {
if ( !( attributeName in ATTRIBUTES ) ) continue;
threeAttributeMap[ ATTRIBUTES[ attributeName ] ] = gltfAttributeMap[ attributeName ];
}
for ( attributeName in primitive.attributes ) {
if ( ATTRIBUTES[ attributeName ] !== undefined && gltfAttributeMap[ attributeName ] !== undefined ) {
var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ ATTRIBUTES[ attributeName ] ] = componentType;
attributeNormalizedMap[ ATTRIBUTES[ attributeName ] ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( var attributeName in geometry.attributes ) {
var attribute = geometry.attributes[ attributeName ];
var normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap );
} );
} );
};
/**
* Specular-Glossiness Extension
*
* Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
*/
function GLTFMaterialsPbrSpecularGlossinessExtension() {
return {
name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,
specularGlossinessParams: [
'color',
'map',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveIntensity',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'displacementMap',
'displacementScale',
'displacementBias',
'specularMap',
'specular',
'glossinessMap',
'glossiness',
'alphaMap',
'envMap',
'envMapIntensity',
'refractionRatio',
],
getMaterialType: function () {
return THREE.ShaderMaterial;
},
extendParams: function ( params, material, parser ) {
var pbrSpecularGlossiness = material.extensions[ this.name ];
var shader = THREE.ShaderLib[ 'standard' ];
var uniforms = THREE.UniformsUtils.clone( shader.uniforms );
var specularMapParsFragmentChunk = [
'#ifdef USE_SPECULARMAP',
' uniform sampler2D specularMap;',
'#endif'
].join( '\n' );
var glossinessMapParsFragmentChunk = [
'#ifdef USE_GLOSSINESSMAP',
' uniform sampler2D glossinessMap;',
'#endif'
].join( '\n' );
var specularMapFragmentChunk = [
'vec3 specularFactor = specular;',
'#ifdef USE_SPECULARMAP',
' vec4 texelSpecular = texture2D( specularMap, vUv );',
' texelSpecular = sRGBToLinear( texelSpecular );',
' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
' specularFactor *= texelSpecular.rgb;',
'#endif'
].join( '\n' );
var glossinessMapFragmentChunk = [
'float glossinessFactor = glossiness;',
'#ifdef USE_GLOSSINESSMAP',
' vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
' glossinessFactor *= texelGlossiness.a;',
'#endif'
].join( '\n' );
var lightPhysicalFragmentChunk = [
'PhysicalMaterial material;',
'material.diffuseColor = diffuseColor.rgb;',
'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );',
'material.specularColor = specularFactor.rgb;',
].join( '\n' );
var fragmentShader = shader.fragmentShader
.replace( 'uniform float roughness;', 'uniform vec3 specular;' )
.replace( 'uniform float metalness;', 'uniform float glossiness;' )
.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk )
.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk )
.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk )
.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk )
.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );
delete uniforms.roughness;
delete uniforms.metalness;
delete uniforms.roughnessMap;
delete uniforms.metalnessMap;
uniforms.specular = { value: new THREE.Color().setHex( 0x111111 ) };
uniforms.glossiness = { value: 0.5 };
uniforms.specularMap = { value: null };
uniforms.glossinessMap = { value: null };
params.vertexShader = shader.vertexShader;
params.fragmentShader = fragmentShader;
params.uniforms = uniforms;
params.defines = { 'STANDARD': '' };
params.color = new THREE.Color( 1.0, 1.0, 1.0 );
params.opacity = 1.0;
var pending = [];
if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {
var array = pbrSpecularGlossiness.diffuseFactor;
params.color.fromArray( array );
params.opacity = array[ 3 ];
}
if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {
pending.push( parser.assignTexture( params, 'map', pbrSpecularGlossiness.diffuseTexture.index ) );
}
params.emissive = new THREE.Color( 0.0, 0.0, 0.0 );
params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
params.specular = new THREE.Color( 1.0, 1.0, 1.0 );
if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {
params.specular.fromArray( pbrSpecularGlossiness.specularFactor );
}
if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {
var specGlossIndex = pbrSpecularGlossiness.specularGlossinessTexture.index;
pending.push( parser.assignTexture( params, 'glossinessMap', specGlossIndex ) );
pending.push( parser.assignTexture( params, 'specularMap', specGlossIndex ) );
}
return Promise.all( pending );
},
createMaterial: function ( params ) {
// setup material properties based on MeshStandardMaterial for Specular-Glossiness
var material = new THREE.ShaderMaterial( {
defines: params.defines,
vertexShader: params.vertexShader,
fragmentShader: params.fragmentShader,
uniforms: params.uniforms,
fog: true,
lights: true,
opacity: params.opacity,
transparent: params.transparent
} );
material.isGLTFSpecularGlossinessMaterial = true;
material.color = params.color;
material.map = params.map === undefined ? null : params.map;
material.lightMap = null;
material.lightMapIntensity = 1.0;
material.aoMap = params.aoMap === undefined ? null : params.aoMap;
material.aoMapIntensity = 1.0;
material.emissive = params.emissive;
material.emissiveIntensity = 1.0;
material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap;
material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap;
material.bumpScale = 1;
material.normalMap = params.normalMap === undefined ? null : params.normalMap;
if ( params.normalScale ) material.normalScale = params.normalScale;
material.displacementMap = null;
material.displacementScale = 1;
material.displacementBias = 0;
material.specularMap = params.specularMap === undefined ? null : params.specularMap;
material.specular = params.specular;
material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap;
material.glossiness = params.glossiness;
material.alphaMap = null;
material.envMap = params.envMap === undefined ? null : params.envMap;
material.envMapIntensity = 1.0;
material.refractionRatio = 0.98;
material.extensions.derivatives = true;
return material;
},
/**
* Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can
* copy only properties it knows about or inherits, and misses many properties that would
* normally be defined by MeshStandardMaterial.
*
* This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of
* loading a glTF model, but cloning later (e.g. by the user) would require these changes
* AND also updating `.onBeforeRender` on the parent mesh.
*
* @param {THREE.ShaderMaterial} source
* @return {THREE.ShaderMaterial}
*/
cloneMaterial: function ( source ) {
var target = source.clone();
target.isGLTFSpecularGlossinessMaterial = true;
var params = this.specularGlossinessParams;
for ( var i = 0, il = params.length; i < il; i ++ ) {
target[ params[ i ] ] = source[ params[ i ] ];
}
return target;
},
// Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer.
refreshUniforms: function ( renderer, scene, camera, geometry, material, group ) {
if ( material.isGLTFSpecularGlossinessMaterial !== true ) {
return;
}
var uniforms = material.uniforms;
var defines = material.defines;
uniforms.opacity.value = material.opacity;
uniforms.diffuse.value.copy( material.color );
uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );
uniforms.map.value = material.map;
uniforms.specularMap.value = material.specularMap;
uniforms.alphaMap.value = material.alphaMap;
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
// uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. normal map
// 4. bump map
// 5. alpha map
// 6. emissive map
var uvScaleMap;
if ( material.map ) {
uvScaleMap = material.map;
} else if ( material.specularMap ) {
uvScaleMap = material.specularMap;
} else if ( material.displacementMap ) {
uvScaleMap = material.displacementMap;
} else if ( material.normalMap ) {
uvScaleMap = material.normalMap;
} else if ( material.bumpMap ) {
uvScaleMap = material.bumpMap;
} else if ( material.glossinessMap ) {
uvScaleMap = material.glossinessMap;
} else if ( material.alphaMap ) {
uvScaleMap = material.alphaMap;
} else if ( material.emissiveMap ) {
uvScaleMap = material.emissiveMap;
}
if ( uvScaleMap !== undefined ) {
// backwards compatibility
if ( uvScaleMap.isWebGLRenderTarget ) {
uvScaleMap = uvScaleMap.texture;
}
var offset;
var repeat;
if ( uvScaleMap.matrix !== undefined ) {
// > r88.
if ( uvScaleMap.matrixAutoUpdate === true ) {
offset = uvScaleMap.offset;
repeat = uvScaleMap.repeat;
var rotation = uvScaleMap.rotation;
var center = uvScaleMap.center;
uvScaleMap.matrix.setUvTransform( offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y );
}
uniforms.uvTransform.value.copy( uvScaleMap.matrix );
} else {
// <= r87. Remove when reasonable.
offset = uvScaleMap.offset;
repeat = uvScaleMap.repeat;
uniforms.offsetRepeat.value.set( offset.x, offset.y, repeat.x, repeat.y );
}
}
uniforms.envMap.value = material.envMap;
uniforms.envMapIntensity.value = material.envMapIntensity;
uniforms.flipEnvMap.value = ( material.envMap && material.envMap.isCubeTexture ) ? - 1 : 1;
uniforms.refractionRatio.value = material.refractionRatio;
uniforms.specular.value.copy( material.specular );
uniforms.glossiness.value = material.glossiness;
uniforms.glossinessMap.value = material.glossinessMap;
uniforms.emissiveMap.value = material.emissiveMap;
uniforms.bumpMap.value = material.bumpMap;
uniforms.normalMap.value = material.normalMap;
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
if ( uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined ) {
defines.USE_GLOSSINESSMAP = '';
// set USE_ROUGHNESSMAP to enable vUv
defines.USE_ROUGHNESSMAP = '';
}
if ( uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined ) {
delete defines.USE_GLOSSINESSMAP;
delete defines.USE_ROUGHNESSMAP;
}
}
};
}
/*********************************/
/********** INTERPOLATION ********/
/*********************************/
// Spline Interpolation
// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
THREE.Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );
};
GLTFCubicSplineInterpolant.prototype = Object.create( THREE.Interpolant.prototype );
GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;
GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {
var result = this.resultBuffer;
var values = this.sampleValues;
var stride = this.valueSize;
var stride2 = stride * 2;
var stride3 = stride * 3;
var td = t1 - t0;
var p = ( t - t0 ) / td;
var pp = p * p;
var ppp = pp * p;
var offset1 = i1 * stride3;
var offset0 = offset1 - stride3;
var s0 = 2 * ppp - 3 * pp + 1;
var s1 = ppp - 2 * pp + p;
var s2 = - 2 * ppp + 3 * pp;
var s3 = ppp - pp;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( var i = 0; i !== stride; i ++ ) {
var p0 = values[ offset0 + i + stride ]; // splineVertex_k
var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
};
/*********************************/
/********** INTERNALS ************/
/*********************************/
/* CONSTANTS */
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_TYPE = {
5126: Number,
//35674: THREE.Matrix2,
35675: THREE.Matrix3,
35676: THREE.Matrix4,
35664: THREE.Vector2,
35665: THREE.Vector3,
35666: THREE.Vector4,
35678: THREE.Texture
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: THREE.NearestFilter,
9729: THREE.LinearFilter,
9984: THREE.NearestMipMapNearestFilter,
9985: THREE.LinearMipMapNearestFilter,
9986: THREE.NearestMipMapLinearFilter,
9987: THREE.LinearMipMapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: THREE.ClampToEdgeWrapping,
33648: THREE.MirroredRepeatWrapping,
10497: THREE.RepeatWrapping
};
var WEBGL_TEXTURE_FORMATS = {
6406: THREE.AlphaFormat,
6407: THREE.RGBFormat,
6408: THREE.RGBAFormat,
6409: THREE.LuminanceFormat,
6410: THREE.LuminanceAlphaFormat
};
var WEBGL_TEXTURE_DATATYPES = {
5121: THREE.UnsignedByteType,
32819: THREE.UnsignedShort4444Type,
32820: THREE.UnsignedShort5551Type,
33635: THREE.UnsignedShort565Type
};
var WEBGL_SIDES = {
1028: THREE.BackSide, // Culling front
1029: THREE.FrontSide // Culling back
//1032: THREE.NoSide // Culling front and back, what to do?
};
var WEBGL_DEPTH_FUNCS = {
512: THREE.NeverDepth,
513: THREE.LessDepth,
514: THREE.EqualDepth,
515: THREE.LessEqualDepth,
516: THREE.GreaterEqualDepth,
517: THREE.NotEqualDepth,
518: THREE.GreaterEqualDepth,
519: THREE.AlwaysDepth
};
var WEBGL_BLEND_EQUATIONS = {
32774: THREE.AddEquation,
32778: THREE.SubtractEquation,
32779: THREE.ReverseSubtractEquation
};
var WEBGL_BLEND_FUNCS = {
0: THREE.ZeroFactor,
1: THREE.OneFactor,
768: THREE.SrcColorFactor,
769: THREE.OneMinusSrcColorFactor,
770: THREE.SrcAlphaFactor,
771: THREE.OneMinusSrcAlphaFactor,
772: THREE.DstAlphaFactor,
773: THREE.OneMinusDstAlphaFactor,
774: THREE.DstColorFactor,
775: THREE.OneMinusDstColorFactor,
776: THREE.SrcAlphaSaturateFactor
// The followings are not supported by Three.js yet
//32769: CONSTANT_COLOR,
//32770: ONE_MINUS_CONSTANT_COLOR,
//32771: CONSTANT_ALPHA,
//32772: ONE_MINUS_CONSTANT_COLOR
};
var WEBGL_TYPE_SIZES = {
'SCALAR': 1,
'VEC2': 2,
'VEC3': 3,
'VEC4': 4,
'MAT2': 4,
'MAT3': 9,
'MAT4': 16
};
var ATTRIBUTES = {
POSITION: 'position',
NORMAL: 'normal',
TEXCOORD_0: 'uv',
TEXCOORD0: 'uv', // deprecated
TEXCOORD: 'uv', // deprecated
TEXCOORD_1: 'uv2',
COLOR_0: 'color',
COLOR0: 'color', // deprecated
COLOR: 'color', // deprecated
WEIGHTS_0: 'skinWeight',
WEIGHT: 'skinWeight', // deprecated
JOINTS_0: 'skinIndex',
JOINT: 'skinIndex' // deprecated
}
var PATH_PROPERTIES = {
scale: 'scale',
translation: 'position',
rotation: 'quaternion',
weights: 'morphTargetInfluences'
};
var INTERPOLATION = {
CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE.
// KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout,
// using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization.
// See KeyframeTrack.optimize() for the detail.
LINEAR: THREE.InterpolateLinear,
STEP: THREE.InterpolateDiscrete
};
var STATES_ENABLES = {
2884: 'CULL_FACE',
2929: 'DEPTH_TEST',
3042: 'BLEND',
3089: 'SCISSOR_TEST',
32823: 'POLYGON_OFFSET_FILL',
32926: 'SAMPLE_ALPHA_TO_COVERAGE'
};
var ALPHA_MODES = {
OPAQUE: 'OPAQUE',
MASK: 'MASK',
BLEND: 'BLEND'
};
/* UTILITY FUNCTIONS */
function resolveURL( url, path ) {
// Invalid URL
if ( typeof url !== 'string' || url === '' ) return '';
// Absolute URL http://,https://,//
if ( /^(https?:)?\/\//i.test( url ) ) return url;
// Data URI
if ( /^data:.*,.*$/i.test( url ) ) return url;
// Blob URL
if ( /^blob:.*$/i.test( url ) ) return url;
// Relative URL
return path + url;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*/
function createDefaultMaterial() {
return new THREE.MeshStandardMaterial( {
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: THREE.FrontSide
} );
}
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
// Add unknown glTF extensions to an object's userData.
for ( var name in objectDef.extensions ) {
if ( knownExtensions[ name ] === undefined ) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
}
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @param {THREE.Geometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {Array<THREE.BufferAttribute>} accessors
*/
function addMorphTargets( geometry, targets, accessors ) {
var hasMorphPosition = false;
var hasMorphNormal = false;
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
if ( target.POSITION !== undefined ) hasMorphPosition = true;
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
if ( hasMorphPosition && hasMorphNormal ) break;
}
if ( ! hasMorphPosition && ! hasMorphNormal ) return;
var morphPositions = [];
var morphNormals = [];
for ( var i = 0, il = targets.length; i < il; i ++ ) {
var target = targets[ i ];
var attributeName = 'morphTarget' + i;
if ( hasMorphPosition ) {
// Three.js morph position is absolute value. The formula is
// basePosition
// + weight0 * ( morphPosition0 - basePosition )
// + weight1 * ( morphPosition1 - basePosition )
// ...
// while the glTF one is relative
// basePosition
// + weight0 * glTFmorphPosition0
// + weight1 * glTFmorphPosition1
// ...
// then we need to convert from relative to absolute here.
if ( target.POSITION !== undefined ) {
// Cloning not to pollute original accessor
var positionAttribute = cloneBufferAttribute( accessors[ target.POSITION ] );
positionAttribute.name = attributeName;
var position = geometry.attributes.position;
for ( var j = 0, jl = positionAttribute.count; j < jl; j ++ ) {
positionAttribute.setXYZ(
j,
positionAttribute.getX( j ) + position.getX( j ),
positionAttribute.getY( j ) + position.getY( j ),
positionAttribute.getZ( j ) + position.getZ( j )
);
}
} else {
positionAttribute = geometry.attributes.position;
}
morphPositions.push( positionAttribute );
}
if ( hasMorphNormal ) {
// see target.POSITION's comment
var normalAttribute;
if ( target.NORMAL !== undefined ) {
var normalAttribute = cloneBufferAttribute( accessors[ target.NORMAL ] );
normalAttribute.name = attributeName;
var normal = geometry.attributes.normal;
for ( var j = 0, jl = normalAttribute.count; j < jl; j ++ ) {
normalAttribute.setXYZ(
j,
normalAttribute.getX( j ) + normal.getX( j ),
normalAttribute.getY( j ) + normal.getY( j ),
normalAttribute.getZ( j ) + normal.getZ( j )
);
}
} else {
normalAttribute = geometry.attributes.normal;
}
morphNormals.push( normalAttribute );
}
}
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
}
/**
* @param {THREE.Mesh} mesh
* @param {GLTF.Mesh} meshDef
*/
function updateMorphTargets( mesh, meshDef ) {
mesh.updateMorphTargets();
if ( meshDef.weights !== undefined ) {
for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) {
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
var targetNames = meshDef.extras.targetNames;
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
mesh.morphTargetDictionary = {};
for ( var i = 0, il = targetNames.length; i < il; i ++ ) {
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
}
} else {
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
}
}
}
function isPrimitiveEqual( a, b ) {
if ( a.indices !== b.indices ) {
return false;
}
return isObjectEqual( a.attributes, b.attributes );
}
function isObjectEqual( a, b ) {
if ( Object.keys( a ).length !== Object.keys( b ).length ) return false;
for ( var key in a ) {
if ( a[ key ] !== b[ key ] ) return false;
}
return true;
}
function isArrayEqual( a, b ) {
if ( a.length !== b.length ) return false;
for ( var i = 0, il = a.length; i < il; i ++ ) {
if ( a[ i ] !== b[ i ] ) return false;
}
return true;
}
function getCachedGeometry( cache, newPrimitive ) {
for ( var i = 0, il = cache.length; i < il; i ++ ) {
var cached = cache[ i ];
if ( isPrimitiveEqual( cached.primitive, newPrimitive ) ) return cached.promise;
}
return null;
}
function getCachedCombinedGeometry( cache, geometries ) {
for ( var i = 0, il = cache.length; i < il; i ++ ) {
var cached = cache[ i ];
if ( isArrayEqual( geometries, cached.baseGeometries ) ) return cached.geometry;
}
return null;
}
function getCachedMultiPassGeometry( cache, geometry, primitives ) {
for ( var i = 0, il = cache.length; i < il; i ++ ) {
var cached = cache[ i ];
if ( geometry === cached.baseGeometry && isArrayEqual( primitives, cached.primitives ) ) return cached.geometry;
}
return null;
}
function cloneBufferAttribute( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) {
var count = attribute.count;
var itemSize = attribute.itemSize;
var array = attribute.array.slice( 0, count * itemSize );
for ( var i = 0; i < count; ++ i ) {
array[ i ] = attribute.getX( i );
if ( itemSize >= 2 ) array[ i + 1 ] = attribute.getY( i );
if ( itemSize >= 3 ) array[ i + 2 ] = attribute.getZ( i );
if ( itemSize >= 4 ) array[ i + 3 ] = attribute.getW( i );
}
return new THREE.BufferAttribute( array, itemSize, attribute.normalized );
}
return attribute.clone();
}
/**
* Checks if we can build a single Mesh with MultiMaterial from multiple primitives.
* Returns true if all primitives use the same attributes/morphAttributes/mode
* and also have index. Otherwise returns false.
*
* @param {Array<GLTF.Primitive>} primitives
* @return {Boolean}
*/
function isMultiPassGeometry( primitives ) {
if ( primitives.length < 2 ) return false;
var primitive0 = primitives[ 0 ];
var targets0 = primitive0.targets || [];
if ( primitive0.indices === undefined ) return false;
for ( var i = 1, il = primitives.length; i < il; i ++ ) {
var primitive = primitives[ i ];
if ( primitive0.mode !== primitive.mode ) return false;
if ( primitive.indices === undefined ) return false;
if ( ! isObjectEqual( primitive0.attributes, primitive.attributes ) ) return false;
var targets = primitive.targets || [];
if ( targets0.length !== targets.length ) return false;
for ( var j = 0, jl = targets0.length; j < jl; j ++ ) {
if ( ! isObjectEqual( targets0[ j ], targets[ j ] ) ) return false;
}
}
return true;
}
/* GLTF PARSER */
function GLTFParser( json, extensions, options ) {
this.json = json || {};
this.extensions = extensions || {};
this.options = options || {};
// loader object cache
this.cache = new GLTFRegistry();
// BufferGeometry caching
this.primitiveCache = [];
this.multiplePrimitivesCache = [];
this.multiPassGeometryCache = []
this.textureLoader = new THREE.TextureLoader( this.options.manager );
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
this.fileLoader = new THREE.FileLoader( this.options.manager );
this.fileLoader.setResponseType( 'arraybuffer' );
}
GLTFParser.prototype.parse = function ( onLoad, onError ) {
var json = this.json;
// Clear the loader cache
this.cache.removeAll();
// Mark the special nodes/meshes in json for efficient parse
this.markDefs();
// Fire the callback on complete
this.getMultiDependencies( [
'scene',
'animation',
'camera'
] ).then( function ( dependencies ) {
var scenes = dependencies.scenes || [];
var scene = scenes[ json.scene || 0 ];
var animations = dependencies.animations || [];
var cameras = dependencies.cameras || [];
onLoad( scene, scenes, cameras, animations, json );
} ).catch( onError );
};
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
GLTFParser.prototype.markDefs = function () {
var nodeDefs = this.json.nodes || [];
var skinDefs = this.json.skins || [];
var meshDefs = this.json.meshes || [];
var meshReferences = {};
var meshUses = {};
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
var joints = skinDefs[ skinIndex ].joints;
for ( var i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
// avoid having more than one THREE.Mesh with the same name, count
// references and rename instances below.
//
// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
var nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
if ( meshReferences[ nodeDef.mesh ] === undefined ) {
meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0;
}
meshReferences[ nodeDef.mesh ] ++;
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
}
this.json.meshReferences = meshReferences;
this.json.meshUses = meshUses;
};
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<Object>}
*/
GLTFParser.prototype.getDependency = function ( type, index ) {
var cacheKey = type + ':' + index;
var dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this.loadNode( index );
break;
case 'mesh':
dependency = this.loadMesh( index );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this.loadBufferView( index );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this.loadMaterial( index );
break;
case 'texture':
dependency = this.loadTexture( index );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this.loadAnimation( index );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
default:
throw new Error( 'Unknown type: ' + type );
}
this.cache.add( cacheKey, dependency );
}
return dependency;
};
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
GLTFParser.prototype.getDependencies = function ( type ) {
var dependencies = this.cache.get( type );
if ( ! dependencies ) {
var parser = this;
var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
};
/**
* Requests all multiple dependencies of the specified types asynchronously, with caching.
* @param {Array<string>} types
* @return {Promise<Object<Array<Object>>>}
*/
GLTFParser.prototype.getMultiDependencies = function ( types ) {
var results = {};
var pendings = [];
for ( var i = 0, il = types.length; i < il; i ++ ) {
var type = types[ i ];
var value = this.getDependencies( type );
value = value.then( function ( key, value ) {
results[ key ] = value;
}.bind( this, type + ( type === 'mesh' ? 'es' : 's' ) ) );
pendings.push( value );
}
return Promise.all( pendings ).then( function () {
return results;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBuffer = function ( bufferIndex ) {
var bufferDef = this.json.buffers[ bufferIndex ];
var loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
var options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) {
var bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
var byteLength = bufferViewDef.byteLength || 0;
var byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise<THREE.BufferAttribute|THREE.InterleavedBufferAttribute>}
*/
GLTFParser.prototype.loadAccessor = function ( accessorIndex ) {
var parser = this;
var json = this.json;
var accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
// Ignore empty accessors, which may be used to declare runtime
// information about attributes coming from another source (e.g. Draco
// compression extension).
return null;
}
var pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
var bufferView = bufferViews[ 0 ];
var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
var elementBytes = TypedArray.BYTES_PER_ELEMENT;
var itemBytes = elementBytes * itemSize;
var byteOffset = accessorDef.byteOffset || 0;
var byteStride = json.bufferViews[ accessorDef.bufferView ].byteStride;
var normalized = accessorDef.normalized === true;
var array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType;
var ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
// Use the full buffer if it's interleaved.
array = new TypedArray( bufferView );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new THREE.InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new THREE.InterleavedBufferAttribute( ib, itemSize, byteOffset / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new THREE.BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute.setArray( bufferAttribute.array.slice() );
}
for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) {
var index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
}
}
return bufferAttribute;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise<THREE.Texture>}
*/
GLTFParser.prototype.loadTexture = function ( textureIndex ) {
var parser = this;
var json = this.json;
var options = this.options;
var textureLoader = this.textureLoader;
var URL = window.URL || window.webkitURL;
var textureDef = json.textures[ textureIndex ];
var textureExtensions = textureDef.extensions || {};
var source;
if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) {
source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ];
} else {
source = json.images[ textureDef.source ];
}
var sourceURI = source.uri;
var isObjectURL = false;
if ( source.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
var blob = new Blob( [ bufferView ], { type: source.mimeType } );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
}
return Promise.resolve( sourceURI ).then( function ( sourceURI ) {
// Load Texture resource.
var loader = THREE.Loader.Handlers.get( sourceURI );
if ( ! loader ) {
loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ]
? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader
: textureLoader;
}
return new Promise( function ( resolve, reject ) {
loader.load( resolveURL( sourceURI, options.path ), resolve, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
texture.flipY = false;
if ( textureDef.name !== undefined ) texture.name = textureDef.name;
// .format of dds texture is set in DDSLoader
if ( ! textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) {
texture.format = textureDef.format !== undefined ? WEBGL_TEXTURE_FORMATS[ textureDef.format ] : THREE.RGBAFormat;
}
if ( textureDef.internalFormat !== undefined && texture.format !== WEBGL_TEXTURE_FORMATS[ textureDef.internalFormat ] ) {
console.warn( 'THREE.GLTFLoader: Three.js does not support texture internalFormat which is different from texture format. ' +
'internalFormat will be forced to be the same value as format.' );
}
texture.type = textureDef.type !== undefined ? WEBGL_TEXTURE_DATATYPES[ textureDef.type ] : THREE.UnsignedByteType;
var samplers = json.samplers || {};
var sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || THREE.LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || THREE.LinearMipMapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || THREE.RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || THREE.RepeatWrapping;
return texture;
} );
};
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} textureName
* @param {number} textureIndex
* @return {Promise}
*/
GLTFParser.prototype.assignTexture = function ( materialParams, textureName, textureIndex ) {
return this.getDependency( 'texture', textureIndex ).then( function ( texture ) {
materialParams[ textureName ] = texture;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise<THREE.Material>}
*/
GLTFParser.prototype.loadMaterial = function ( materialIndex ) {
var parser = this;
var json = this.json;
var extensions = this.extensions;
var materialDef = this.json.materials[ materialIndex ];
var materialType;
var materialParams = {};
var materialExtensions = materialDef.extensions || {};
var pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {
var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
materialType = sgExtension.getMaterialType( materialDef );
pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );
} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType( materialDef );
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
materialType = THREE.MeshStandardMaterial;
var metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new THREE.Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
var array = metallicRoughness.baseColorFactor;
materialParams.color.fromArray( array );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture.index ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
var textureIndex = metallicRoughness.metallicRoughnessTexture.index;
pending.push( parser.assignTexture( materialParams, 'metalnessMap', textureIndex ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', textureIndex ) );
}
}
if ( materialDef.doubleSided === true ) {
materialParams.side = THREE.DoubleSide;
}
var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture.index ) );
materialParams.normalScale = new THREE.Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture.index ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) {
materialParams.emissive = new THREE.Color().fromArray( materialDef.emissiveFactor );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture.index ) );
}
return Promise.all( pending ).then( function () {
var material;
if ( materialType === THREE.ShaderMaterial ) {
material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );
} else {
material = new materialType( materialParams );
}
if ( materialDef.name !== undefined ) material.name = materialDef.name;
// Normal map textures use OpenGL conventions:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#materialnormaltexture
if ( material.normalScale ) {
material.normalScale.y = - material.normalScale.y;
}
// emissiveTexture and baseColorTexture use sRGB encoding.
if ( material.map ) material.map.encoding = THREE.sRGBEncoding;
if ( material.emissiveMap ) material.emissiveMap.encoding = THREE.sRGBEncoding;
if ( materialDef.extras ) material.userData = materialDef.extras;
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
};
/**
* @param {THREE.BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {Array<THREE.BufferAttribute>} accessors
*/
function addPrimitiveAttributes( geometry, primitiveDef, accessors ) {
var attributes = primitiveDef.attributes;
for ( var gltfAttributeName in attributes ) {
var threeAttributeName = ATTRIBUTES[ gltfAttributeName ];
var bufferAttribute = accessors[ attributes[ gltfAttributeName ] ];
// Skip attributes already provided by e.g. Draco extension.
if ( !threeAttributeName ) continue;
if ( threeAttributeName in geometry.attributes ) continue;
geometry.addAttribute( threeAttributeName, bufferAttribute );
}
if ( primitiveDef.indices !== undefined && ! geometry.index ) {
geometry.setIndex( accessors[ primitiveDef.indices ] );
}
if ( primitiveDef.targets !== undefined ) {
addMorphTargets( geometry, primitiveDef.targets, accessors );
}
if ( primitiveDef.extras !== undefined ) {
geometry.userData = primitiveDef.extras;
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
* If we can build a single BufferGeometry with .groups from multiple primitives, returns one BufferGeometry.
* Otherwise, returns BufferGeometries without .groups as many as primitives.
*
* @param {Array<Object>} primitives
* @return {Promise<Array<THREE.BufferGeometry>>}
*/
GLTFParser.prototype.loadGeometries = function ( primitives ) {
var parser = this;
var extensions = this.extensions;
var cache = this.primitiveCache;
var isMultiPass = isMultiPassGeometry( primitives );
var originalPrimitives;
if ( isMultiPass ) {
originalPrimitives = primitives; // save original primitives and use later
// We build a single BufferGeometry with .groups from multiple primitives
// because all primitives share the same attributes/morph/mode and have indices.
primitives = [ primitives[ 0 ] ];
// Sets .groups and combined indices to a geometry later in this method.
}
return this.getDependencies( 'accessor' ).then( function ( accessors ) {
var pending = [];
for ( var i = 0, il = primitives.length; i < il; i ++ ) {
var primitive = primitives[ i ];
// See if we've already created this geometry
var cached = getCachedGeometry( cache, primitive );
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached );
} else if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
var geometryPromise = extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
.decodePrimitive( primitive, parser )
.then( function ( geometry ) {
addPrimitiveAttributes( geometry, primitive, accessors );
return geometry;
} );
cache.push( { primitive: primitive, promise: geometryPromise } );
pending.push( geometryPromise );
} else {
// Otherwise create a new geometry
var geometry = new THREE.BufferGeometry();
addPrimitiveAttributes( geometry, primitive, accessors );
var geometryPromise = Promise.resolve( geometry );
// Cache this geometry
cache.push( { primitive: primitive, promise: geometryPromise } );
pending.push( geometryPromise );
}
}
return Promise.all( pending ).then( function ( geometries ) {
if ( isMultiPass ) {
var baseGeometry = geometries[ 0 ];
// See if we've already created this combined geometry
var cache = parser.multiPassGeometryCache;
var cached = getCachedMultiPassGeometry( cache, baseGeometry, originalPrimitives );
if ( cached !== null ) return [ cached.geometry ];
// Cloning geometry because of index override.
// Attributes can be reused so cloning by myself here.
var geometry = new THREE.BufferGeometry();
geometry.name = baseGeometry.name;
geometry.userData = baseGeometry.userData;
for ( var key in baseGeometry.attributes ) geometry.addAttribute( key, baseGeometry.attributes[ key ] );
for ( var key in baseGeometry.morphAttributes ) geometry.morphAttributes[ key ] = baseGeometry.morphAttributes[ key ];
var indices = [];
var offset = 0;
for ( var i = 0, il = originalPrimitives.length; i < il; i ++ ) {
var accessor = accessors[ originalPrimitives[ i ].indices ];
for ( var j = 0, jl = accessor.count; j < jl; j ++ ) indices.push( accessor.array[ j ] );
geometry.addGroup( offset, accessor.count, i );
offset += accessor.count;
}
geometry.setIndex( indices );
cache.push( { geometry: geometry, baseGeometry: baseGeometry, primitives: originalPrimitives } );
return [ geometry ];
} else if ( geometries.length > 1 && THREE.BufferGeometryUtils !== undefined ) {
// Tries to merge geometries with BufferGeometryUtils if possible
for ( var i = 1, il = primitives.length; i < il; i ++ ) {
// can't merge if draw mode is different
if ( primitives[ 0 ].mode !== primitives[ i ].mode ) return geometries;
}
// See if we've already created this combined geometry
var cache = parser.multiplePrimitivesCache;
var cached = getCachedCombinedGeometry( cache, geometries );
if ( cached ) {
if ( cached.geometry !== null ) return [ cached.geometry ];
} else {
var geometry = THREE.BufferGeometryUtils.mergeBufferGeometries( geometries, true );
cache.push( { geometry: geometry, baseGeometries: geometries } );
if ( geometry !== null ) return [ geometry ];
}
}
return geometries;
} );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise<THREE.Group|THREE.Mesh|THREE.SkinnedMesh>}
*/
GLTFParser.prototype.loadMesh = function ( meshIndex ) {
var scope = this;
var json = this.json;
var extensions = this.extensions;
var meshDef = this.json.meshes[ meshIndex ];
return this.getMultiDependencies( [
'accessor',
'material'
] ).then( function ( dependencies ) {
var primitives = meshDef.primitives;
var originalMaterials = [];
for ( var i = 0, il = primitives.length; i < il; i ++ ) {
originalMaterials[ i ] = primitives[ i ].material === undefined
? createDefaultMaterial()
: dependencies.materials[ primitives[ i ].material ];
}
return scope.loadGeometries( primitives ).then( function ( geometries ) {
var isMultiMaterial = geometries.length === 1 && geometries[ 0 ].groups.length > 0;
var meshes = [];
for ( var i = 0, il = geometries.length; i < il; i ++ ) {
var geometry = geometries[ i ];
var primitive = primitives[ i ];
// 1. create Mesh
var mesh;
var material = isMultiMaterial ? originalMaterials : originalMaterials[ i ]
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See .markDefs()
mesh = meshDef.isSkinnedMesh === true
? new THREE.SkinnedMesh( geometry, material )
: new THREE.Mesh( geometry, material );
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.drawMode = THREE.TriangleStripDrawMode;
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.drawMode = THREE.TriangleFanDrawMode;
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new THREE.LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new THREE.Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new THREE.LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new THREE.Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = meshDef.name || ( 'mesh_' + meshIndex );
if ( geometries.length > 1 ) mesh.name += '_' + i;
if ( meshDef.extras !== undefined ) mesh.userData = meshDef.extras;
meshes.push( mesh );
// 2. update Material depending on Mesh and BufferGeometry
var materials = isMultiMaterial ? mesh.material : [ mesh.material ];
var useVertexColors = geometry.attributes.color !== undefined;
var useFlatShading = geometry.attributes.normal === undefined;
var useSkinning = mesh.isSkinnedMesh === true;
var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0;
var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;
for ( var j = 0, jl = materials.length; j < jl; j ++ ) {
var material = materials[ j ];
if ( mesh.isPoints ) {
var cacheKey = 'PointsMaterial:' + material.uuid;
var pointsMaterial = scope.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new THREE.PointsMaterial();
THREE.Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet
scope.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
var cacheKey = 'LineBasicMaterial:' + material.uuid;
var lineMaterial = scope.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new THREE.LineBasicMaterial();
THREE.Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet
scope.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// If the material will be modified later on, clone it now.
if ( useVertexColors || useFlatShading || useSkinning || useMorphTargets ) {
material = material.isGLTFSpecularGlossinessMaterial
? extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].cloneMaterial( material )
: material.clone();
}
if ( useSkinning ) {
material.skinning = true;
}
if ( useVertexColors ) {
material.vertexColors = THREE.VertexColors;
material.needsUpdate = true;
}
if ( useFlatShading ) {
material.flatShading = true;
}
if ( useMorphTargets ) {
material.morphTargets = true;
}
if ( useMorphNormals ) {
material.morphNormals = true;
}
materials[ j ] = material;
// workarounds for mesh and geometry
if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {
console.log( 'THREE.GLTFLoader: Duplicating UVs to support aoMap.' );
geometry.addAttribute( 'uv2', new THREE.BufferAttribute( geometry.attributes.uv.array, 2 ) );
}
if ( material.isGLTFSpecularGlossinessMaterial ) {
// for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update
mesh.onBeforeRender = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].refreshUniforms;
}
}
mesh.material = isMultiMaterial ? materials : materials[ 0 ];
}
if ( meshes.length === 1 ) {
return meshes[ 0 ];
}
var group = new THREE.Group();
for ( var i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
GLTFParser.prototype.loadCamera = function ( cameraIndex ) {
var camera;
var cameraDef = this.json.cameras[ cameraIndex ];
var params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new THREE.PerspectiveCamera( THREE.Math.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new THREE.OrthographicCamera( params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar );
}
if ( cameraDef.name !== undefined ) camera.name = cameraDef.name;
if ( cameraDef.extras ) camera.userData = cameraDef.extras;
return Promise.resolve( camera );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise<Object>}
*/
GLTFParser.prototype.loadSkin = function ( skinIndex ) {
var skinDef = this.json.skins[ skinIndex ];
var skinEntry = { joints: skinDef.joints };
if ( skinDef.inverseBindMatrices === undefined ) {
return Promise.resolve( skinEntry );
}
return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {
skinEntry.inverseBindMatrices = accessor;
return skinEntry;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise<THREE.AnimationClip>}
*/
GLTFParser.prototype.loadAnimation = function ( animationIndex ) {
var json = this.json;
var animationDef = this.json.animations[ animationIndex ];
return this.getMultiDependencies( [
'accessor',
'node'
] ).then( function ( dependencies ) {
var tracks = [];
for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) {
var channel = animationDef.channels[ i ];
var sampler = animationDef.samplers[ channel.sampler ];
if ( sampler ) {
var target = channel.target;
var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
var inputAccessor = dependencies.accessors[ input ];
var outputAccessor = dependencies.accessors[ output ];
var node = dependencies.nodes[ name ];
if ( node ) {
node.updateMatrix();
node.matrixAutoUpdate = true;
var TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = THREE.NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = THREE.QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
default:
TypedKeyframeTrack = THREE.VectorKeyframeTrack;
break;
}
var targetName = node.name ? node.name : node.uuid;
var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : THREE.InterpolateLinear;
var targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
// node should be THREE.Group here but
// PATH_PROPERTIES.weights(morphTargetInfluences) should be
// the property of a mesh object under node.
// So finding targets here.
node.traverse( function ( object ) {
if ( object.isMesh === true && object.material.morphTargets === true ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
// KeyframeTrack.optimize() will modify given 'times' and 'values'
// buffers before creating a truncated copy to keep. Because buffers may
// be reused by other tracks, make copies here.
for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) {
var track = new TypedKeyframeTrack(
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
THREE.AnimationUtils.arraySlice( inputAccessor.array, 0 ),
THREE.AnimationUtils.arraySlice( outputAccessor.array, 0 ),
interpolation
);
// Here is the trick to enable custom interpolation.
// Overrides .createInterpolant in a factory method which creates custom interpolation.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );
};
// Workaround, provide an alternate way to know if the interpolant type is cubis spline to track.
// track.getInterpolation() doesn't return valid value for custom interpolant.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
tracks.push( track );
}
}
}
}
var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex;
return new THREE.AnimationClip( name, undefined, tracks );
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise<THREE.Object3D>}
*/
GLTFParser.prototype.loadNode = function ( nodeIndex ) {
var json = this.json;
var extensions = this.extensions;
var meshReferences = this.json.meshReferences;
var meshUses = this.json.meshUses;
var nodeDef = this.json.nodes[ nodeIndex ];
return this.getMultiDependencies( [
'mesh',
'skin',
'camera',
'light'
] ).then( function ( dependencies ) {
var node;
// .isBone isn't in glTF spec. See .markDefs
if ( nodeDef.isBone === true ) {
node = new THREE.Bone();
} else if ( nodeDef.mesh !== undefined ) {
var mesh = dependencies.meshes[ nodeDef.mesh ];
node = mesh.clone();
// for Specular-Glossiness
if ( mesh.isGroup === true ) {
for ( var i = 0, il = mesh.children.length; i < il; i ++ ) {
var child = mesh.children[ i ];
if ( child.material && child.material.isGLTFSpecularGlossinessMaterial === true ) {
node.children[ i ].onBeforeRender = child.onBeforeRender;
}
}
} else {
if ( mesh.material && mesh.material.isGLTFSpecularGlossinessMaterial === true ) {
node.onBeforeRender = mesh.onBeforeRender;
}
}
if ( meshReferences[ nodeDef.mesh ] > 1 ) {
node.name += '_instance_' + meshUses[ nodeDef.mesh ] ++;
}
} else if ( nodeDef.camera !== undefined ) {
node = dependencies.cameras[ nodeDef.camera ];
} else if ( nodeDef.extensions
&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ]
&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) {
var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights;
node = lights[ nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ];
} else {
node = new THREE.Object3D();
}
if ( nodeDef.name !== undefined ) {
node.name = THREE.PropertyBinding.sanitizeNodeName( nodeDef.name );
}
if ( nodeDef.extras ) node.userData = nodeDef.extras;
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
var matrix = new THREE.Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
return node;
} );
};
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise<THREE.Scene>}
*/
GLTFParser.prototype.loadScene = function () {
// scene node hierachy builder
function buildNodeHierachy( nodeId, parentObject, json, allNodes, skins ) {
var node = allNodes[ nodeId ];
var nodeDef = json.nodes[ nodeId ];
// build skeleton here as well
if ( nodeDef.skin !== undefined ) {
var meshes = node.isGroup === true ? node.children : [ node ];
for ( var i = 0, il = meshes.length; i < il; i ++ ) {
var mesh = meshes[ i ];
var skinEntry = skins[ nodeDef.skin ];
var bones = [];
var boneInverses = [];
for ( var j = 0, jl = skinEntry.joints.length; j < jl; j ++ ) {
var jointId = skinEntry.joints[ j ];
var jointNode = allNodes[ jointId ];
if ( jointNode ) {
bones.push( jointNode );
var mat = new THREE.Matrix4();
if ( skinEntry.inverseBindMatrices !== undefined ) {
mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', jointId );
}
}
mesh.bind( new THREE.Skeleton( bones, boneInverses ), mesh.matrixWorld );
}
}
// build node hierachy
parentObject.add( node );
if ( nodeDef.children ) {
var children = nodeDef.children;
for ( var i = 0, il = children.length; i < il; i ++ ) {
var child = children[ i ];
buildNodeHierachy( child, node, json, allNodes, skins );
}
}
}
return function loadScene( sceneIndex ) {
var json = this.json;
var extensions = this.extensions;
var sceneDef = this.json.scenes[ sceneIndex ];
return this.getMultiDependencies( [
'node',
'skin'
] ).then( function ( dependencies ) {
var scene = new THREE.Scene();
if ( sceneDef.name !== undefined ) scene.name = sceneDef.name;
if ( sceneDef.extras ) scene.userData = sceneDef.extras;
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
var nodeIds = sceneDef.nodes || [];
for ( var i = 0, il = nodeIds.length; i < il; i ++ ) {
buildNodeHierachy( nodeIds[ i ], scene, json, dependencies.nodes, dependencies.skins );
}
// Ambient lighting, if present, is always attached to the scene root.
if ( sceneDef.extensions
&& sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ]
&& sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light !== undefined ) {
var lights = extensions[ EXTENSIONS.KHR_LIGHTS ].lights;
scene.add( lights[ sceneDef.extensions[ EXTENSIONS.KHR_LIGHTS ].light ] );
}
return scene;
} );
};
}();
return GLTFLoader;
} )();