three 基础库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

366 lines
12 KiB

( function () {
/**
* UnrealBloomPass is inspired by the bloom pass of Unreal Engine. It creates a
* mip map chain of bloom textures and blurs them with different radii. Because
* of the weighted combination of mips, and because larger blurs are done on
* higher mips, this effect provides good quality and performance.
*
* Reference:
* - https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/Bloom/
*/
class UnrealBloomPass extends THREE.Pass {
constructor( resolution, strength, radius, threshold ) {
super();
this.strength = strength !== undefined ? strength : 1;
this.radius = radius;
this.threshold = threshold;
this.resolution = resolution !== undefined ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 ); // create color only once here, reuse it later inside the render function
this.clearColor = new THREE.Color( 0, 0, 0 ); // render targets
const pars = {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
};
this.renderTargetsHorizontal = [];
this.renderTargetsVertical = [];
this.nMips = 5;
let resx = Math.round( this.resolution.x / 2 );
let resy = Math.round( this.resolution.y / 2 );
this.renderTargetBright = new THREE.WebGLRenderTarget( resx, resy, pars );
this.renderTargetBright.texture.name = 'UnrealBloomPass.bright';
this.renderTargetBright.texture.generateMipmaps = false;
for ( let i = 0; i < this.nMips; i ++ ) {
const renderTargetHorizonal = new THREE.WebGLRenderTarget( resx, resy, pars );
renderTargetHorizonal.texture.name = 'UnrealBloomPass.h' + i;
renderTargetHorizonal.texture.generateMipmaps = false;
this.renderTargetsHorizontal.push( renderTargetHorizonal );
const renderTargetVertical = new THREE.WebGLRenderTarget( resx, resy, pars );
renderTargetVertical.texture.name = 'UnrealBloomPass.v' + i;
renderTargetVertical.texture.generateMipmaps = false;
this.renderTargetsVertical.push( renderTargetVertical );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
} // luminosity high pass material
if ( THREE.LuminosityHighPassShader === undefined ) console.error( 'THREE.UnrealBloomPass relies on THREE.LuminosityHighPassShader' );
const highPassShader = THREE.LuminosityHighPassShader;
this.highPassUniforms = THREE.UniformsUtils.clone( highPassShader.uniforms );
this.highPassUniforms[ 'luminosityThreshold' ].value = threshold;
this.highPassUniforms[ 'smoothWidth' ].value = 0.01;
this.materialHighPassFilter = new THREE.ShaderMaterial( {
uniforms: this.highPassUniforms,
vertexShader: highPassShader.vertexShader,
fragmentShader: highPassShader.fragmentShader,
defines: {}
} ); // Gaussian Blur Materials
this.separableBlurMaterials = [];
const kernelSizeArray = [ 3, 5, 7, 9, 11 ];
resx = Math.round( this.resolution.x / 2 );
resy = Math.round( this.resolution.y / 2 );
for ( let i = 0; i < this.nMips; i ++ ) {
this.separableBlurMaterials.push( this.getSeperableBlurMaterial( kernelSizeArray[ i ] ) );
this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
} // Composite material
this.compositeMaterial = this.getCompositeMaterial( this.nMips );
this.compositeMaterial.uniforms[ 'blurTexture1' ].value = this.renderTargetsVertical[ 0 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture2' ].value = this.renderTargetsVertical[ 1 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture3' ].value = this.renderTargetsVertical[ 2 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture4' ].value = this.renderTargetsVertical[ 3 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture5' ].value = this.renderTargetsVertical[ 4 ].texture;
this.compositeMaterial.uniforms[ 'bloomStrength' ].value = strength;
this.compositeMaterial.uniforms[ 'bloomRadius' ].value = 0.1;
this.compositeMaterial.needsUpdate = true;
const bloomFactors = [ 1.0, 0.8, 0.6, 0.4, 0.2 ];
this.compositeMaterial.uniforms[ 'bloomFactors' ].value = bloomFactors;
this.bloomTintColors = [ new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ) ];
this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors; // copy material
if ( THREE.CopyShader === undefined ) {
console.error( 'THREE.UnrealBloomPass relies on THREE.CopyShader' );
}
const copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.copyUniforms[ 'opacity' ].value = 1.0;
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.AdditiveBlending,
depthTest: false,
depthWrite: false,
transparent: true
} );
this.enabled = true;
this.needsSwap = false;
this._oldClearColor = new THREE.Color();
this.oldClearAlpha = 1;
this.basic = new THREE.MeshBasicMaterial();
this.fsQuad = new THREE.FullScreenQuad( null );
}
dispose() {
for ( let i = 0; i < this.renderTargetsHorizontal.length; i ++ ) {
this.renderTargetsHorizontal[ i ].dispose();
}
for ( let i = 0; i < this.renderTargetsVertical.length; i ++ ) {
this.renderTargetsVertical[ i ].dispose();
}
this.renderTargetBright.dispose();
}
setSize( width, height ) {
let resx = Math.round( width / 2 );
let resy = Math.round( height / 2 );
this.renderTargetBright.setSize( resx, resy );
for ( let i = 0; i < this.nMips; i ++ ) {
this.renderTargetsHorizontal[ i ].setSize( resx, resy );
this.renderTargetsVertical[ i ].setSize( resx, resy );
this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
}
}
render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {
renderer.getClearColor( this._oldClearColor );
this.oldClearAlpha = renderer.getClearAlpha();
const oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
renderer.setClearColor( this.clearColor, 0 );
if ( maskActive ) renderer.state.buffers.stencil.setTest( false ); // Render input to screen
if ( this.renderToScreen ) {
this.fsQuad.material = this.basic;
this.basic.map = readBuffer.texture;
renderer.setRenderTarget( null );
renderer.clear();
this.fsQuad.render( renderer );
} // 1. Extract Bright Areas
this.highPassUniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.highPassUniforms[ 'luminosityThreshold' ].value = this.threshold;
this.fsQuad.material = this.materialHighPassFilter;
renderer.setRenderTarget( this.renderTargetBright );
renderer.clear();
this.fsQuad.render( renderer ); // 2. Blur All the mips progressively
let inputRenderTarget = this.renderTargetBright;
for ( let i = 0; i < this.nMips; i ++ ) {
this.fsQuad.material = this.separableBlurMaterials[ i ];
this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = inputRenderTarget.texture;
this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = UnrealBloomPass.BlurDirectionX;
renderer.setRenderTarget( this.renderTargetsHorizontal[ i ] );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = this.renderTargetsHorizontal[ i ].texture;
this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = UnrealBloomPass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetsVertical[ i ] );
renderer.clear();
this.fsQuad.render( renderer );
inputRenderTarget = this.renderTargetsVertical[ i ];
} // Composite All the mips
this.fsQuad.material = this.compositeMaterial;
this.compositeMaterial.uniforms[ 'bloomStrength' ].value = this.strength;
this.compositeMaterial.uniforms[ 'bloomRadius' ].value = this.radius;
this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors;
renderer.setRenderTarget( this.renderTargetsHorizontal[ 0 ] );
renderer.clear();
this.fsQuad.render( renderer ); // Blend it additively over the input texture
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetsHorizontal[ 0 ].texture;
if ( maskActive ) renderer.state.buffers.stencil.setTest( true );
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( readBuffer );
this.fsQuad.render( renderer );
} // Restore renderer settings
renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
renderer.autoClear = oldAutoClear;
}
getSeperableBlurMaterial( kernelRadius ) {
return new THREE.ShaderMaterial( {
defines: {
'KERNEL_RADIUS': kernelRadius,
'SIGMA': kernelRadius
},
uniforms: {
'colorTexture': {
value: null
},
'texSize': {
value: new THREE.Vector2( 0.5, 0.5 )
},
'direction': {
value: new THREE.Vector2( 0.5, 0.5 )
}
},
vertexShader: `varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: `#include <common>
varying vec2 vUv;
uniform sampler2D colorTexture;
uniform vec2 texSize;
uniform vec2 direction;
float gaussianPdf(in float x, in float sigma) {
return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
}
void main() {
vec2 invSize = 1.0 / texSize;
float fSigma = float(SIGMA);
float weightSum = gaussianPdf(0.0, fSigma);
vec3 diffuseSum = texture2D( colorTexture, vUv).rgb * weightSum;
for( int i = 1; i < KERNEL_RADIUS; i ++ ) {
float x = float(i);
float w = gaussianPdf(x, fSigma);
vec2 uvOffset = direction * invSize * x;
vec3 sample1 = texture2D( colorTexture, vUv + uvOffset).rgb;
vec3 sample2 = texture2D( colorTexture, vUv - uvOffset).rgb;
diffuseSum += (sample1 + sample2) * w;
weightSum += 2.0 * w;
}
gl_FragColor = vec4(diffuseSum/weightSum, 1.0);
}`
} );
}
getCompositeMaterial( nMips ) {
return new THREE.ShaderMaterial( {
defines: {
'NUM_MIPS': nMips
},
uniforms: {
'blurTexture1': {
value: null
},
'blurTexture2': {
value: null
},
'blurTexture3': {
value: null
},
'blurTexture4': {
value: null
},
'blurTexture5': {
value: null
},
'dirtTexture': {
value: null
},
'bloomStrength': {
value: 1.0
},
'bloomFactors': {
value: null
},
'bloomTintColors': {
value: null
},
'bloomRadius': {
value: 0.0
}
},
vertexShader: `varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: `varying vec2 vUv;
uniform sampler2D blurTexture1;
uniform sampler2D blurTexture2;
uniform sampler2D blurTexture3;
uniform sampler2D blurTexture4;
uniform sampler2D blurTexture5;
uniform sampler2D dirtTexture;
uniform float bloomStrength;
uniform float bloomRadius;
uniform float bloomFactors[NUM_MIPS];
uniform vec3 bloomTintColors[NUM_MIPS];
float lerpBloomFactor(const in float factor) {
float mirrorFactor = 1.2 - factor;
return mix(factor, mirrorFactor, bloomRadius);
}
void main() {
gl_FragColor = bloomStrength * ( lerpBloomFactor(bloomFactors[0]) * vec4(bloomTintColors[0], 1.0) * texture2D(blurTexture1, vUv) +
lerpBloomFactor(bloomFactors[1]) * vec4(bloomTintColors[1], 1.0) * texture2D(blurTexture2, vUv) +
lerpBloomFactor(bloomFactors[2]) * vec4(bloomTintColors[2], 1.0) * texture2D(blurTexture3, vUv) +
lerpBloomFactor(bloomFactors[3]) * vec4(bloomTintColors[3], 1.0) * texture2D(blurTexture4, vUv) +
lerpBloomFactor(bloomFactors[4]) * vec4(bloomTintColors[4], 1.0) * texture2D(blurTexture5, vUv) );
}`
} );
}
}
UnrealBloomPass.BlurDirectionX = new THREE.Vector2( 1.0, 0.0 );
UnrealBloomPass.BlurDirectionY = new THREE.Vector2( 0.0, 1.0 );
THREE.UnrealBloomPass = UnrealBloomPass;
} )();