You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
11 KiB
358 lines
11 KiB
( function () {
|
|
|
|
/**
|
|
* GPUComputationRenderer, based on SimulationRenderer by zz85
|
|
*
|
|
* The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
|
|
* for each compute element (texel)
|
|
*
|
|
* Each variable has a fragment shader that defines the computation made to obtain the variable in question.
|
|
* You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
|
|
* (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
|
|
*
|
|
* The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
|
|
* as inputs to render the textures of the next frame.
|
|
*
|
|
* The render targets of the variables can be used as input textures for your visualization shaders.
|
|
*
|
|
* Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
|
|
* a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
|
|
*
|
|
* The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
|
|
* #DEFINE resolution vec2( 1024.0, 1024.0 )
|
|
*
|
|
* -------------
|
|
*
|
|
* Basic use:
|
|
*
|
|
* // Initialization...
|
|
*
|
|
* // Create computation renderer
|
|
* const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
|
|
*
|
|
* // Create initial state float textures
|
|
* const pos0 = gpuCompute.createTexture();
|
|
* const vel0 = gpuCompute.createTexture();
|
|
* // and fill in here the texture data...
|
|
*
|
|
* // Add texture variables
|
|
* const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
|
|
* const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
|
|
*
|
|
* // Add variable dependencies
|
|
* gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
|
|
* gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
|
|
*
|
|
* // Add custom uniforms
|
|
* velVar.material.uniforms.time = { value: 0.0 };
|
|
*
|
|
* // Check for completeness
|
|
* const error = gpuCompute.init();
|
|
* if ( error !== null ) {
|
|
* console.error( error );
|
|
* }
|
|
*
|
|
*
|
|
* // In each frame...
|
|
*
|
|
* // Compute!
|
|
* gpuCompute.compute();
|
|
*
|
|
* // Update texture uniforms in your visualization materials with the gpu renderer output
|
|
* myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
|
|
*
|
|
* // Do your rendering
|
|
* renderer.render( myScene, myCamera );
|
|
*
|
|
* -------------
|
|
*
|
|
* Also, you can use utility functions to create THREE.ShaderMaterial and perform computations (rendering between textures)
|
|
* Note that the shaders can have multiple input textures.
|
|
*
|
|
* const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
|
|
* const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
|
|
*
|
|
* const inputTexture = gpuCompute.createTexture();
|
|
*
|
|
* // Fill in here inputTexture...
|
|
*
|
|
* myFilter1.uniforms.theTexture.value = inputTexture;
|
|
*
|
|
* const myRenderTarget = gpuCompute.createRenderTarget();
|
|
* myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
|
|
*
|
|
* const outputRenderTarget = gpuCompute.createRenderTarget();
|
|
*
|
|
* // Now use the output texture where you want:
|
|
* myMaterial.uniforms.map.value = outputRenderTarget.texture;
|
|
*
|
|
* // And compute each frame, before rendering to screen:
|
|
* gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
|
|
* gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
|
|
*
|
|
*
|
|
*
|
|
* @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
|
|
* @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
|
|
* @param {WebGLRenderer} renderer The renderer
|
|
*/
|
|
|
|
class GPUComputationRenderer {
|
|
|
|
constructor( sizeX, sizeY, renderer ) {
|
|
|
|
this.variables = [];
|
|
this.currentTextureIndex = 0;
|
|
let dataType = THREE.FloatType;
|
|
const scene = new THREE.Scene();
|
|
const camera = new THREE.Camera();
|
|
camera.position.z = 1;
|
|
const passThruUniforms = {
|
|
passThruTexture: {
|
|
value: null
|
|
}
|
|
};
|
|
const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
|
|
const mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader );
|
|
scene.add( mesh );
|
|
|
|
this.setDataType = function ( type ) {
|
|
|
|
dataType = type;
|
|
return this;
|
|
|
|
};
|
|
|
|
this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
|
|
|
|
const material = this.createShaderMaterial( computeFragmentShader );
|
|
const variable = {
|
|
name: variableName,
|
|
initialValueTexture: initialValueTexture,
|
|
material: material,
|
|
dependencies: null,
|
|
renderTargets: [],
|
|
wrapS: null,
|
|
wrapT: null,
|
|
minFilter: THREE.NearestFilter,
|
|
magFilter: THREE.NearestFilter
|
|
};
|
|
this.variables.push( variable );
|
|
return variable;
|
|
|
|
};
|
|
|
|
this.setVariableDependencies = function ( variable, dependencies ) {
|
|
|
|
variable.dependencies = dependencies;
|
|
|
|
};
|
|
|
|
this.init = function () {
|
|
|
|
if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {
|
|
|
|
return 'No OES_texture_float support for float textures.';
|
|
|
|
}
|
|
|
|
if ( renderer.capabilities.maxVertexTextures === 0 ) {
|
|
|
|
return 'No support for vertex shader textures.';
|
|
|
|
}
|
|
|
|
for ( let i = 0; i < this.variables.length; i ++ ) {
|
|
|
|
const variable = this.variables[ i ]; // Creates rendertargets and initialize them with input texture
|
|
|
|
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
|
|
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
|
|
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
|
|
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); // Adds dependencies uniforms to the THREE.ShaderMaterial
|
|
|
|
const material = variable.material;
|
|
const uniforms = material.uniforms;
|
|
|
|
if ( variable.dependencies !== null ) {
|
|
|
|
for ( let d = 0; d < variable.dependencies.length; d ++ ) {
|
|
|
|
const depVar = variable.dependencies[ d ];
|
|
|
|
if ( depVar.name !== variable.name ) {
|
|
|
|
// Checks if variable exists
|
|
let found = false;
|
|
|
|
for ( let j = 0; j < this.variables.length; j ++ ) {
|
|
|
|
if ( depVar.name === this.variables[ j ].name ) {
|
|
|
|
found = true;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ! found ) {
|
|
|
|
return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uniforms[ depVar.name ] = {
|
|
value: null
|
|
};
|
|
material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
this.currentTextureIndex = 0;
|
|
return null;
|
|
|
|
};
|
|
|
|
this.compute = function () {
|
|
|
|
const currentTextureIndex = this.currentTextureIndex;
|
|
const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
|
|
|
|
for ( let i = 0, il = this.variables.length; i < il; i ++ ) {
|
|
|
|
const variable = this.variables[ i ]; // Sets texture dependencies uniforms
|
|
|
|
if ( variable.dependencies !== null ) {
|
|
|
|
const uniforms = variable.material.uniforms;
|
|
|
|
for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
|
|
|
|
const depVar = variable.dependencies[ d ];
|
|
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
|
|
|
|
}
|
|
|
|
} // Performs the computation for this variable
|
|
|
|
|
|
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
|
|
|
|
}
|
|
|
|
this.currentTextureIndex = nextTextureIndex;
|
|
|
|
};
|
|
|
|
this.getCurrentRenderTarget = function ( variable ) {
|
|
|
|
return variable.renderTargets[ this.currentTextureIndex ];
|
|
|
|
};
|
|
|
|
this.getAlternateRenderTarget = function ( variable ) {
|
|
|
|
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
|
|
|
|
};
|
|
|
|
function addResolutionDefine( materialShader ) {
|
|
|
|
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
|
|
|
|
}
|
|
|
|
this.addResolutionDefine = addResolutionDefine; // The following functions can be used to compute things manually
|
|
|
|
function createShaderMaterial( computeFragmentShader, uniforms ) {
|
|
|
|
uniforms = uniforms || {};
|
|
const material = new THREE.ShaderMaterial( {
|
|
uniforms: uniforms,
|
|
vertexShader: getPassThroughVertexShader(),
|
|
fragmentShader: computeFragmentShader
|
|
} );
|
|
addResolutionDefine( material );
|
|
return material;
|
|
|
|
}
|
|
|
|
this.createShaderMaterial = createShaderMaterial;
|
|
|
|
this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
|
|
|
|
sizeXTexture = sizeXTexture || sizeX;
|
|
sizeYTexture = sizeYTexture || sizeY;
|
|
wrapS = wrapS || THREE.ClampToEdgeWrapping;
|
|
wrapT = wrapT || THREE.ClampToEdgeWrapping;
|
|
minFilter = minFilter || THREE.NearestFilter;
|
|
magFilter = magFilter || THREE.NearestFilter;
|
|
const renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
|
|
wrapS: wrapS,
|
|
wrapT: wrapT,
|
|
minFilter: minFilter,
|
|
magFilter: magFilter,
|
|
format: THREE.RGBAFormat,
|
|
type: dataType,
|
|
depthBuffer: false
|
|
} );
|
|
return renderTarget;
|
|
|
|
};
|
|
|
|
this.createTexture = function () {
|
|
|
|
const data = new Float32Array( sizeX * sizeY * 4 );
|
|
return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
|
|
|
|
};
|
|
|
|
this.renderTexture = function ( input, output ) {
|
|
|
|
// Takes a texture, and render out in rendertarget
|
|
// input = Texture
|
|
// output = RenderTarget
|
|
passThruUniforms.passThruTexture.value = input;
|
|
this.doRenderTarget( passThruShader, output );
|
|
passThruUniforms.passThruTexture.value = null;
|
|
|
|
};
|
|
|
|
this.doRenderTarget = function ( material, output ) {
|
|
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
mesh.material = material;
|
|
renderer.setRenderTarget( output );
|
|
renderer.render( scene, camera );
|
|
mesh.material = passThruShader;
|
|
renderer.setRenderTarget( currentRenderTarget );
|
|
|
|
}; // Shaders
|
|
|
|
|
|
function getPassThroughVertexShader() {
|
|
|
|
return 'void main() {\n' + '\n' + ' gl_Position = vec4( position, 1.0 );\n' + '\n' + '}\n';
|
|
|
|
}
|
|
|
|
function getPassThroughFragmentShader() {
|
|
|
|
return 'uniform sampler2D passThruTexture;\n' + '\n' + 'void main() {\n' + '\n' + ' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + '\n' + ' gl_FragColor = texture2D( passThruTexture, uv );\n' + '\n' + '}\n';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
THREE.GPUComputationRenderer = GPUComputationRenderer;
|
|
|
|
} )();
|
|
|