import { Clock, Color, LinearEncoding, Matrix4, Mesh, RepeatWrapping, ShaderMaterial, TextureLoader, UniformsLib, UniformsUtils, Vector2, Vector4 } from '../../../build/three.module.js'; import { Reflector } from '../objects/Reflector.js'; import { Refractor } from '../objects/Refractor.js'; /** * References: * http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf * http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html * */ class Water extends Mesh { constructor( geometry, options = {} ) { super( geometry ); this.type = 'Water'; const scope = this; const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0xFFFFFF ); const textureWidth = options.textureWidth || 512; const textureHeight = options.textureHeight || 512; const clipBias = options.clipBias || 0; const flowDirection = options.flowDirection || new Vector2( 1, 0 ); const flowSpeed = options.flowSpeed || 0.03; const reflectivity = options.reflectivity || 0.02; const scale = options.scale || 1; const shader = options.shader || Water.WaterShader; const encoding = options.encoding !== undefined ? options.encoding : LinearEncoding; const textureLoader = new TextureLoader(); const flowMap = options.flowMap || undefined; const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' ); const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' ); const cycle = 0.15; // a cycle of a flow map phase const halfCycle = cycle * 0.5; const textureMatrix = new Matrix4(); const clock = new Clock(); // internal components if ( Reflector === undefined ) { console.error( 'THREE.Water: Required component Reflector not found.' ); return; } if ( Refractor === undefined ) { console.error( 'THREE.Water: Required component Refractor not found.' ); return; } const reflector = new Reflector( geometry, { textureWidth: textureWidth, textureHeight: textureHeight, clipBias: clipBias, encoding: encoding } ); const refractor = new Refractor( geometry, { textureWidth: textureWidth, textureHeight: textureHeight, clipBias: clipBias, encoding: encoding } ); reflector.matrixAutoUpdate = false; refractor.matrixAutoUpdate = false; // material this.material = new ShaderMaterial( { uniforms: UniformsUtils.merge( [ UniformsLib[ 'fog' ], shader.uniforms ] ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, transparent: true, fog: true } ); if ( flowMap !== undefined ) { this.material.defines.USE_FLOWMAP = ''; this.material.uniforms[ 'tFlowMap' ] = { type: 't', value: flowMap }; } else { this.material.uniforms[ 'flowDirection' ] = { type: 'v2', value: flowDirection }; } // maps normalMap0.wrapS = normalMap0.wrapT = RepeatWrapping; normalMap1.wrapS = normalMap1.wrapT = RepeatWrapping; this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture; this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture; this.material.uniforms[ 'tNormalMap0' ].value = normalMap0; this.material.uniforms[ 'tNormalMap1' ].value = normalMap1; // water this.material.uniforms[ 'color' ].value = color; this.material.uniforms[ 'reflectivity' ].value = reflectivity; this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // inital values this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0 this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1 this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle this.material.uniforms[ 'config' ].value.w = scale; // scale // functions function updateTextureMatrix( camera ) { textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); textureMatrix.multiply( camera.projectionMatrix ); textureMatrix.multiply( camera.matrixWorldInverse ); textureMatrix.multiply( scope.matrixWorld ); } function updateFlow() { const delta = clock.getDelta(); const config = scope.material.uniforms[ 'config' ]; config.value.x += flowSpeed * delta; // flowMapOffset0 config.value.y = config.value.x + halfCycle; // flowMapOffset1 // Important: The distance between offsets should be always the value of "halfCycle". // Moreover, both offsets should be in the range of [ 0, cycle ]. // This approach ensures a smooth water flow and avoids "reset" effects. if ( config.value.x >= cycle ) { config.value.x = 0; config.value.y = halfCycle; } else if ( config.value.y >= cycle ) { config.value.y = config.value.y - cycle; } } // this.onBeforeRender = function ( renderer, scene, camera ) { updateTextureMatrix( camera ); updateFlow(); scope.visible = false; reflector.matrixWorld.copy( scope.matrixWorld ); refractor.matrixWorld.copy( scope.matrixWorld ); reflector.onBeforeRender( renderer, scene, camera ); refractor.onBeforeRender( renderer, scene, camera ); scope.visible = true; }; } } Water.prototype.isWater = true; Water.WaterShader = { uniforms: { 'color': { type: 'c', value: null }, 'reflectivity': { type: 'f', value: 0 }, 'tReflectionMap': { type: 't', value: null }, 'tRefractionMap': { type: 't', value: null }, 'tNormalMap0': { type: 't', value: null }, 'tNormalMap1': { type: 't', value: null }, 'textureMatrix': { type: 'm4', value: null }, 'config': { type: 'v4', value: new Vector4() } }, vertexShader: /* glsl */` #include #include #include uniform mat4 textureMatrix; varying vec4 vCoord; varying vec2 vUv; varying vec3 vToEye; void main() { vUv = uv; vCoord = textureMatrix * vec4( position, 1.0 ); vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); vToEye = cameraPosition - worldPosition.xyz; vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex gl_Position = projectionMatrix * mvPosition; #include #include }`, fragmentShader: /* glsl */` #include #include #include uniform sampler2D tReflectionMap; uniform sampler2D tRefractionMap; uniform sampler2D tNormalMap0; uniform sampler2D tNormalMap1; #ifdef USE_FLOWMAP uniform sampler2D tFlowMap; #else uniform vec2 flowDirection; #endif uniform vec3 color; uniform float reflectivity; uniform vec4 config; varying vec4 vCoord; varying vec2 vUv; varying vec3 vToEye; void main() { #include float flowMapOffset0 = config.x; float flowMapOffset1 = config.y; float halfCycle = config.z; float scale = config.w; vec3 toEye = normalize( vToEye ); // determine flow direction vec2 flow; #ifdef USE_FLOWMAP flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0; #else flow = flowDirection; #endif flow.x *= - 1.0; // sample normal maps (distort uvs with flowdata) vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 ); vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 ); // linear interpolate to get the final normal color float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle; vec4 normalColor = mix( normalColor0, normalColor1, flowLerp ); // calculate normal vector vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) ); // calculate the fresnel term to blend reflection and refraction maps float theta = max( dot( toEye, normal ), 0.0 ); float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 ); // calculate final uv coords vec3 coord = vCoord.xyz / vCoord.w; vec2 uv = coord.xy + coord.z * normal.xz * 0.05; vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) ); vec4 refractColor = texture2D( tRefractionMap, uv ); // multiply water color with the mix of both textures gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance ); #include #include #include }` }; export { Water };