( function () { class PCDLoader extends THREE.Loader { constructor( manager ) { super( manager ); this.littleEndian = true; } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new THREE.FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( data ) { try { onLoad( scope.parse( data, url ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( data, url ) { // from https://gitlab.com/taketwo/three-pcd-loader/blob/master/decompress-lzf.js function decompressLZF( inData, outLength ) { const inLength = inData.length; const outData = new Uint8Array( outLength ); let inPtr = 0; let outPtr = 0; let ctrl; let len; let ref; do { ctrl = inData[ inPtr ++ ]; if ( ctrl < 1 << 5 ) { ctrl ++; if ( outPtr + ctrl > outLength ) throw new Error( 'Output buffer is not large enough' ); if ( inPtr + ctrl > inLength ) throw new Error( 'Invalid compressed data' ); do { outData[ outPtr ++ ] = inData[ inPtr ++ ]; } while ( -- ctrl ); } else { len = ctrl >> 5; ref = outPtr - ( ( ctrl & 0x1f ) << 8 ) - 1; if ( inPtr >= inLength ) throw new Error( 'Invalid compressed data' ); if ( len === 7 ) { len += inData[ inPtr ++ ]; if ( inPtr >= inLength ) throw new Error( 'Invalid compressed data' ); } ref -= inData[ inPtr ++ ]; if ( outPtr + len + 2 > outLength ) throw new Error( 'Output buffer is not large enough' ); if ( ref < 0 ) throw new Error( 'Invalid compressed data' ); if ( ref >= outPtr ) throw new Error( 'Invalid compressed data' ); do { outData[ outPtr ++ ] = outData[ ref ++ ]; } while ( -- len + 2 ); } } while ( inPtr < inLength ); return outData; } function parseHeader( data ) { const PCDheader = {}; const result1 = data.search( /[\r\n]DATA\s(\S*)\s/i ); const result2 = /[\r\n]DATA\s(\S*)\s/i.exec( data.substr( result1 - 1 ) ); PCDheader.data = result2[ 1 ]; PCDheader.headerLen = result2[ 0 ].length + result1; PCDheader.str = data.substr( 0, PCDheader.headerLen ); // remove comments PCDheader.str = PCDheader.str.replace( /\#.*/gi, '' ); // parse PCDheader.version = /VERSION (.*)/i.exec( PCDheader.str ); PCDheader.fields = /FIELDS (.*)/i.exec( PCDheader.str ); PCDheader.size = /SIZE (.*)/i.exec( PCDheader.str ); PCDheader.type = /TYPE (.*)/i.exec( PCDheader.str ); PCDheader.count = /COUNT (.*)/i.exec( PCDheader.str ); PCDheader.width = /WIDTH (.*)/i.exec( PCDheader.str ); PCDheader.height = /HEIGHT (.*)/i.exec( PCDheader.str ); PCDheader.viewpoint = /VIEWPOINT (.*)/i.exec( PCDheader.str ); PCDheader.points = /POINTS (.*)/i.exec( PCDheader.str ); // evaluate if ( PCDheader.version !== null ) PCDheader.version = parseFloat( PCDheader.version[ 1 ] ); if ( PCDheader.fields !== null ) PCDheader.fields = PCDheader.fields[ 1 ].split( ' ' ); if ( PCDheader.type !== null ) PCDheader.type = PCDheader.type[ 1 ].split( ' ' ); if ( PCDheader.width !== null ) PCDheader.width = parseInt( PCDheader.width[ 1 ] ); if ( PCDheader.height !== null ) PCDheader.height = parseInt( PCDheader.height[ 1 ] ); if ( PCDheader.viewpoint !== null ) PCDheader.viewpoint = PCDheader.viewpoint[ 1 ]; if ( PCDheader.points !== null ) PCDheader.points = parseInt( PCDheader.points[ 1 ], 10 ); if ( PCDheader.points === null ) PCDheader.points = PCDheader.width * PCDheader.height; if ( PCDheader.size !== null ) { PCDheader.size = PCDheader.size[ 1 ].split( ' ' ).map( function ( x ) { return parseInt( x, 10 ); } ); } if ( PCDheader.count !== null ) { PCDheader.count = PCDheader.count[ 1 ].split( ' ' ).map( function ( x ) { return parseInt( x, 10 ); } ); } else { PCDheader.count = []; for ( let i = 0, l = PCDheader.fields.length; i < l; i ++ ) { PCDheader.count.push( 1 ); } } PCDheader.offset = {}; let sizeSum = 0; for ( let i = 0, l = PCDheader.fields.length; i < l; i ++ ) { if ( PCDheader.data === 'ascii' ) { PCDheader.offset[ PCDheader.fields[ i ] ] = i; } else { PCDheader.offset[ PCDheader.fields[ i ] ] = sizeSum; sizeSum += PCDheader.size[ i ] * PCDheader.count[ i ]; } } // for binary only PCDheader.rowSize = sizeSum; return PCDheader; } const textData = THREE.LoaderUtils.decodeText( new Uint8Array( data ) ); // parse header (always ascii format) const PCDheader = parseHeader( textData ); // parse data const position = []; const normal = []; const color = []; // ascii if ( PCDheader.data === 'ascii' ) { const offset = PCDheader.offset; const pcdData = textData.substr( PCDheader.headerLen ); const lines = pcdData.split( '\n' ); for ( let i = 0, l = lines.length; i < l; i ++ ) { if ( lines[ i ] === '' ) continue; const line = lines[ i ].split( ' ' ); if ( offset.x !== undefined ) { position.push( parseFloat( line[ offset.x ] ) ); position.push( parseFloat( line[ offset.y ] ) ); position.push( parseFloat( line[ offset.z ] ) ); } if ( offset.rgb !== undefined ) { const rgb = parseFloat( line[ offset.rgb ] ); const r = rgb >> 16 & 0x0000ff; const g = rgb >> 8 & 0x0000ff; const b = rgb >> 0 & 0x0000ff; color.push( r / 255, g / 255, b / 255 ); } if ( offset.normal_x !== undefined ) { normal.push( parseFloat( line[ offset.normal_x ] ) ); normal.push( parseFloat( line[ offset.normal_y ] ) ); normal.push( parseFloat( line[ offset.normal_z ] ) ); } } } // binary-compressed // normally data in PCD files are organized as array of structures: XYZRGBXYZRGB // binary compressed PCD files organize their data as structure of arrays: XXYYZZRGBRGB // that requires a totally different parsing approach compared to non-compressed data if ( PCDheader.data === 'binary_compressed' ) { const sizes = new Uint32Array( data.slice( PCDheader.headerLen, PCDheader.headerLen + 8 ) ); const compressedSize = sizes[ 0 ]; const decompressedSize = sizes[ 1 ]; const decompressed = decompressLZF( new Uint8Array( data, PCDheader.headerLen + 8, compressedSize ), decompressedSize ); const dataview = new DataView( decompressed.buffer ); const offset = PCDheader.offset; for ( let i = 0; i < PCDheader.points; i ++ ) { if ( offset.x !== undefined ) { position.push( dataview.getFloat32( PCDheader.points * offset.x + PCDheader.size[ 0 ] * i, this.littleEndian ) ); position.push( dataview.getFloat32( PCDheader.points * offset.y + PCDheader.size[ 1 ] * i, this.littleEndian ) ); position.push( dataview.getFloat32( PCDheader.points * offset.z + PCDheader.size[ 2 ] * i, this.littleEndian ) ); } if ( offset.rgb !== undefined ) { color.push( dataview.getUint8( PCDheader.points * offset.rgb + PCDheader.size[ 3 ] * i + 0 ) / 255.0 ); color.push( dataview.getUint8( PCDheader.points * offset.rgb + PCDheader.size[ 3 ] * i + 1 ) / 255.0 ); color.push( dataview.getUint8( PCDheader.points * offset.rgb + PCDheader.size[ 3 ] * i + 2 ) / 255.0 ); } if ( offset.normal_x !== undefined ) { normal.push( dataview.getFloat32( PCDheader.points * offset.normal_x + PCDheader.size[ 4 ] * i, this.littleEndian ) ); normal.push( dataview.getFloat32( PCDheader.points * offset.normal_y + PCDheader.size[ 5 ] * i, this.littleEndian ) ); normal.push( dataview.getFloat32( PCDheader.points * offset.normal_z + PCDheader.size[ 6 ] * i, this.littleEndian ) ); } } } // binary if ( PCDheader.data === 'binary' ) { const dataview = new DataView( data, PCDheader.headerLen ); const offset = PCDheader.offset; for ( let i = 0, row = 0; i < PCDheader.points; i ++, row += PCDheader.rowSize ) { if ( offset.x !== undefined ) { position.push( dataview.getFloat32( row + offset.x, this.littleEndian ) ); position.push( dataview.getFloat32( row + offset.y, this.littleEndian ) ); position.push( dataview.getFloat32( row + offset.z, this.littleEndian ) ); } if ( offset.rgb !== undefined ) { color.push( dataview.getUint8( row + offset.rgb + 2 ) / 255.0 ); color.push( dataview.getUint8( row + offset.rgb + 1 ) / 255.0 ); color.push( dataview.getUint8( row + offset.rgb + 0 ) / 255.0 ); } if ( offset.normal_x !== undefined ) { normal.push( dataview.getFloat32( row + offset.normal_x, this.littleEndian ) ); normal.push( dataview.getFloat32( row + offset.normal_y, this.littleEndian ) ); normal.push( dataview.getFloat32( row + offset.normal_z, this.littleEndian ) ); } } } // build geometry const geometry = new THREE.BufferGeometry(); if ( position.length > 0 ) geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( position, 3 ) ); if ( normal.length > 0 ) geometry.setAttribute( 'normal', new THREE.Float32BufferAttribute( normal, 3 ) ); if ( color.length > 0 ) geometry.setAttribute( 'color', new THREE.Float32BufferAttribute( color, 3 ) ); geometry.computeBoundingSphere(); // build material const material = new THREE.PointsMaterial( { size: 0.005 } ); if ( color.length > 0 ) { material.vertexColors = true; } else { material.color.setHex( Math.random() * 0xffffff ); } // build point cloud const mesh = new THREE.Points( geometry, material ); let name = url.split( '' ).reverse().join( '' ); name = /([^\/]*)/.exec( name ); name = name[ 1 ].split( '' ).reverse().join( '' ); mesh.name = name; return mesh; } } THREE.PCDLoader = PCDLoader; } )();