( function () { const CSMShader = { lights_fragment_begin: /* glsl */ ` GeometricContext geometry; geometry.position = - vViewPosition; geometry.normal = normal; geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition ); #ifdef CLEARCOAT geometry.clearcoatNormal = clearcoatNormal; #endif IncidentLight directLight; #if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct ) PointLight pointLight; #if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0 PointLightShadow pointLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) { pointLight = pointLights[ i ]; getPointDirectLightIrradiance( pointLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS ) pointLightShadow = pointLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct ) SpotLight spotLight; #if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0 SpotLightShadow spotLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) { spotLight = spotLights[ i ]; getSpotDirectLightIrradiance( spotLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS ) spotLightShadow = spotLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_DIR_LIGHTS > 0) && defined( RE_Direct ) && defined( USE_CSM ) && defined( CSM_CASCADES ) DirectionalLight directionalLight; float linearDepth = (vViewPosition.z) / (shadowFar - cameraNear); #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0 DirectionalLightShadow directionalLightShadow; #endif #if defined( USE_SHADOWMAP ) && defined( CSM_FADE ) vec2 cascade; float cascadeCenter; float closestEdge; float margin; float csmx; float csmy; #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { directionalLight = directionalLights[ i ]; getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight ); // NOTE: Depth gets larger away from the camera. // cascade.x is closer, cascade.y is further cascade = CSM_cascades[ i ]; cascadeCenter = ( cascade.x + cascade.y ) / 2.0; closestEdge = linearDepth < cascadeCenter ? cascade.x : cascade.y; margin = 0.25 * pow( closestEdge, 2.0 ); csmx = cascade.x - margin / 2.0; csmy = cascade.y + margin / 2.0; if( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS && linearDepth >= csmx && ( linearDepth < csmy || UNROLLED_LOOP_INDEX == CSM_CASCADES - 1 ) ) { float dist = min( linearDepth - csmx, csmy - linearDepth ); float ratio = clamp( dist / margin, 0.0, 1.0 ); if( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS ) { vec3 prevColor = directLight.color; directionalLightShadow = directionalLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; bool shouldFadeLastCascade = UNROLLED_LOOP_INDEX == CSM_CASCADES - 1 && linearDepth > cascadeCenter; directLight.color = mix( prevColor, directLight.color, shouldFadeLastCascade ? ratio : 1.0 ); } ReflectedLight prevLight = reflectedLight; RE_Direct( directLight, geometry, material, reflectedLight ); bool shouldBlend = UNROLLED_LOOP_INDEX != CSM_CASCADES - 1 || UNROLLED_LOOP_INDEX == CSM_CASCADES - 1 && linearDepth < cascadeCenter; float blendRatio = shouldBlend ? ratio : 1.0; reflectedLight.directDiffuse = mix( prevLight.directDiffuse, reflectedLight.directDiffuse, blendRatio ); reflectedLight.directSpecular = mix( prevLight.directSpecular, reflectedLight.directSpecular, blendRatio ); reflectedLight.indirectDiffuse = mix( prevLight.indirectDiffuse, reflectedLight.indirectDiffuse, blendRatio ); reflectedLight.indirectSpecular = mix( prevLight.indirectSpecular, reflectedLight.indirectSpecular, blendRatio ); } } #pragma unroll_loop_end #else #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { directionalLight = directionalLights[ i ]; getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS ) directionalLightShadow = directionalLightShadows[ i ]; if(linearDepth >= CSM_cascades[UNROLLED_LOOP_INDEX].x && linearDepth < CSM_cascades[UNROLLED_LOOP_INDEX].y) directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; #endif if(linearDepth >= CSM_cascades[UNROLLED_LOOP_INDEX].x && (linearDepth < CSM_cascades[UNROLLED_LOOP_INDEX].y || UNROLLED_LOOP_INDEX == CSM_CASCADES - 1)) RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #endif #if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct ) && !defined( USE_CSM ) && !defined( CSM_CASCADES ) DirectionalLight directionalLight; #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0 DirectionalLightShadow directionalLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { directionalLight = directionalLights[ i ]; getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS ) directionalLightShadow = directionalLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea ) RectAreaLight rectAreaLight; #pragma unroll_loop_start for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) { rectAreaLight = rectAreaLights[ i ]; RE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if defined( RE_IndirectDiffuse ) vec3 iblIrradiance = vec3( 0.0 ); vec3 irradiance = getAmbientLightIrradiance( ambientLightColor ); irradiance += getLightProbeIrradiance( lightProbe, geometry ); #if ( NUM_HEMI_LIGHTS > 0 ) #pragma unroll_loop_start for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) { irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry ); } #pragma unroll_loop_end #endif #endif #if defined( RE_IndirectSpecular ) vec3 radiance = vec3( 0.0 ); vec3 clearcoatRadiance = vec3( 0.0 ); #endif `, lights_pars_begin: /* glsl */ ` #if defined( USE_CSM ) && defined( CSM_CASCADES ) uniform vec2 CSM_cascades[CSM_CASCADES]; uniform float cameraNear; uniform float shadowFar; #endif ` + THREE.ShaderChunk.lights_pars_begin }; THREE.CSMShader = CSMShader; } )();