( function () { /** * Octahedron and Quantization encodings based on work by: * * @link https://github.com/tsherif/mesh-quantization-example * */ class GeometryCompressionUtils { /** * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data. * * @param {THREE.Mesh} mesh * @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" * */ static compressNormals( mesh, encodeMethod ) { if ( ! mesh.geometry ) { console.error( 'Mesh must contain geometry. ' ); } const normal = mesh.geometry.attributes.normal; if ( ! normal ) { console.error( 'Geometry must contain normal attribute. ' ); } if ( normal.isPacked ) return; if ( normal.itemSize != 3 ) { console.error( 'normal.itemSize is not 3, which cannot be encoded. ' ); } const array = normal.array; const count = normal.count; let result; if ( encodeMethod == 'DEFAULT' ) { // TODO: Add 1 byte to the result, making the encoded length to be 4 bytes. result = new Uint8Array( count * 3 ); for ( let idx = 0; idx < array.length; idx += 3 ) { const encoded = EncodingFuncs.defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 ); result[ idx + 0 ] = encoded[ 0 ]; result[ idx + 1 ] = encoded[ 1 ]; result[ idx + 2 ] = encoded[ 2 ]; } mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 3, true ) ); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if ( encodeMethod == 'OCT1Byte' ) { /** * It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage * As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible * Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208 */ result = new Int8Array( count * 2 ); for ( let idx = 0; idx < array.length; idx += 3 ) { const encoded = EncodingFuncs.octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 ); result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; } mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) ); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if ( encodeMethod == 'OCT2Byte' ) { result = new Int16Array( count * 2 ); for ( let idx = 0; idx < array.length; idx += 3 ) { const encoded = EncodingFuncs.octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 ); result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; } mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) ); mesh.geometry.attributes.normal.bytes = result.length * 2; } else if ( encodeMethod == 'ANGLES' ) { result = new Uint16Array( count * 2 ); for ( let idx = 0; idx < array.length; idx += 3 ) { const encoded = EncodingFuncs.anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] ); result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; } mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) ); mesh.geometry.attributes.normal.bytes = result.length * 2; } else { console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' ); } mesh.geometry.attributes.normal.needsUpdate = true; mesh.geometry.attributes.normal.isPacked = true; mesh.geometry.attributes.normal.packingMethod = encodeMethod; // modify material if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) { mesh.material = new PackedPhongMaterial().copy( mesh.material ); } if ( encodeMethod == 'ANGLES' ) { mesh.material.defines.USE_PACKED_NORMAL = 0; } if ( encodeMethod == 'OCT1Byte' ) { mesh.material.defines.USE_PACKED_NORMAL = 1; } if ( encodeMethod == 'OCT2Byte' ) { mesh.material.defines.USE_PACKED_NORMAL = 1; } if ( encodeMethod == 'DEFAULT' ) { mesh.material.defines.USE_PACKED_NORMAL = 2; } } /** * Make the input mesh.geometry's position attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data. * * @param {THREE.Mesh} mesh * */ static compressPositions( mesh ) { if ( ! mesh.geometry ) { console.error( 'Mesh must contain geometry. ' ); } const position = mesh.geometry.attributes.position; if ( ! position ) { console.error( 'Geometry must contain position attribute. ' ); } if ( position.isPacked ) return; if ( position.itemSize != 3 ) { console.error( 'position.itemSize is not 3, which cannot be packed. ' ); } const array = position.array; const encodingBytes = 2; const result = EncodingFuncs.quantizedEncode( array, encodingBytes ); const quantized = result.quantized; const decodeMat = result.decodeMat; // IMPORTANT: calculate original geometry bounding info first, before updating packed positions if ( mesh.geometry.boundingBox == null ) mesh.geometry.computeBoundingBox(); if ( mesh.geometry.boundingSphere == null ) mesh.geometry.computeBoundingSphere(); mesh.geometry.setAttribute( 'position', new THREE.BufferAttribute( quantized, 3 ) ); mesh.geometry.attributes.position.isPacked = true; mesh.geometry.attributes.position.needsUpdate = true; mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; // modify material if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) { mesh.material = new PackedPhongMaterial().copy( mesh.material ); } mesh.material.defines.USE_PACKED_POSITION = 0; mesh.material.uniforms.quantizeMatPos.value = decodeMat; mesh.material.uniforms.quantizeMatPos.needsUpdate = true; } /** * Make the input mesh.geometry's uv attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data. * * @param {THREE.Mesh} mesh * */ static compressUvs( mesh ) { if ( ! mesh.geometry ) { console.error( 'Mesh must contain geometry property. ' ); } const uvs = mesh.geometry.attributes.uv; if ( ! uvs ) { console.error( 'Geometry must contain uv attribute. ' ); } if ( uvs.isPacked ) return; const range = { min: Infinity, max: - Infinity }; const array = uvs.array; for ( let i = 0; i < array.length; i ++ ) { range.min = Math.min( range.min, array[ i ] ); range.max = Math.max( range.max, array[ i ] ); } let result; if ( range.min >= - 1.0 && range.max <= 1.0 ) { // use default encoding method result = new Uint16Array( array.length ); for ( let i = 0; i < array.length; i += 2 ) { const encoded = EncodingFuncs.defaultEncode( array[ i ], array[ i + 1 ], 0, 2 ); result[ i ] = encoded[ 0 ]; result[ i + 1 ] = encoded[ 1 ]; } mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result, 2, true ) ); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.length * 2; if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) { mesh.material = new PackedPhongMaterial().copy( mesh.material ); } mesh.material.defines.USE_PACKED_UV = 0; } else { // use quantized encoding method result = EncodingFuncs.quantizedEncodeUV( array, 2 ); mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result.quantized, 2 ) ); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.quantized.length * 2; if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) { mesh.material = new PackedPhongMaterial().copy( mesh.material ); } mesh.material.defines.USE_PACKED_UV = 1; mesh.material.uniforms.quantizeMatUV.value = result.decodeMat; mesh.material.uniforms.quantizeMatUV.needsUpdate = true; } } } class EncodingFuncs { static defaultEncode( x, y, z, bytes ) { if ( bytes == 1 ) { const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 ); const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 ); const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 ); return new Uint8Array( [ tmpx, tmpy, tmpz ] ); } else if ( bytes == 2 ) { const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 ); const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 ); const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 ); return new Uint16Array( [ tmpx, tmpy, tmpz ] ); } else { console.error( 'number of bytes must be 1 or 2' ); } } static defaultDecode( array, bytes ) { if ( bytes == 1 ) { return [ array[ 0 ] / 255 * 2.0 - 1.0, array[ 1 ] / 255 * 2.0 - 1.0, array[ 2 ] / 255 * 2.0 - 1.0 ]; } else if ( bytes == 2 ) { return [ array[ 0 ] / 65535 * 2.0 - 1.0, array[ 1 ] / 65535 * 2.0 - 1.0, array[ 2 ] / 65535 * 2.0 - 1.0 ]; } else { console.error( 'number of bytes must be 1 or 2' ); } } // for `Angles` encoding static anglesEncode( x, y, z ) { const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 ); const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 ); return new Uint16Array( [ normal0, normal1 ] ); } // for `Octahedron` encoding static octEncodeBest( x, y, z, bytes ) { let oct, dec, best, currentCos, bestCos; // Test various combinations of ceil and floor // to minimize rounding errors best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' ); dec = octDecodeVec2( oct ); bestCos = dot( x, y, z, dec ); oct = octEncodeVec3( x, y, z, 'ceil', 'floor' ); dec = octDecodeVec2( oct ); currentCos = dot( x, y, z, dec ); if ( currentCos > bestCos ) { best = oct; bestCos = currentCos; } oct = octEncodeVec3( x, y, z, 'floor', 'ceil' ); dec = octDecodeVec2( oct ); currentCos = dot( x, y, z, dec ); if ( currentCos > bestCos ) { best = oct; bestCos = currentCos; } oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' ); dec = octDecodeVec2( oct ); currentCos = dot( x, y, z, dec ); if ( currentCos > bestCos ) { best = oct; } return best; function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) { let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ); let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ); if ( z < 0 ) { const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 ); const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 ); x = tempx; y = tempy; let diff = 1 - Math.abs( x ) - Math.abs( y ); if ( diff > 0 ) { diff += 0.001; x += x > 0 ? diff / 2 : - diff / 2; y += y > 0 ? diff / 2 : - diff / 2; } } if ( bytes == 1 ) { return new Int8Array( [ Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) ) ] ); } if ( bytes == 2 ) { return new Int16Array( [ Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) ) ] ); } } function octDecodeVec2( oct ) { let x = oct[ 0 ]; let y = oct[ 1 ]; if ( bytes == 1 ) { x /= x < 0 ? 127 : 128; y /= y < 0 ? 127 : 128; } else if ( bytes == 2 ) { x /= x < 0 ? 32767 : 32768; y /= y < 0 ? 32767 : 32768; } const z = 1 - Math.abs( x ) - Math.abs( y ); if ( z < 0 ) { const tmpx = x; x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 ); y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 ); } const length = Math.sqrt( x * x + y * y + z * z ); return [ x / length, y / length, z / length ]; } function dot( x, y, z, vec3 ) { return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ]; } } static quantizedEncode( array, bytes ) { let quantized, segments; if ( bytes == 1 ) { quantized = new Uint8Array( array.length ); segments = 255; } else if ( bytes == 2 ) { quantized = new Uint16Array( array.length ); segments = 65535; } else { console.error( 'number of bytes error! ' ); } const decodeMat = new THREE.Matrix4(); const min = new Float32Array( 3 ); const max = new Float32Array( 3 ); min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE; max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE; for ( let i = 0; i < array.length; i += 3 ) { min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] ); min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] ); min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] ); max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] ); max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] ); max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] ); } decodeMat.scale( new THREE.Vector3( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments, ( max[ 2 ] - min[ 2 ] ) / segments ) ); decodeMat.elements[ 12 ] = min[ 0 ]; decodeMat.elements[ 13 ] = min[ 1 ]; decodeMat.elements[ 14 ] = min[ 2 ]; decodeMat.transpose(); const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0, max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0 ] ); for ( let i = 0; i < array.length; i += 3 ) { quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] ); quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] ); quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] ); } return { quantized: quantized, decodeMat: decodeMat }; } static quantizedEncodeUV( array, bytes ) { let quantized, segments; if ( bytes == 1 ) { quantized = new Uint8Array( array.length ); segments = 255; } else if ( bytes == 2 ) { quantized = new Uint16Array( array.length ); segments = 65535; } else { console.error( 'number of bytes error! ' ); } const decodeMat = new THREE.Matrix3(); const min = new Float32Array( 2 ); const max = new Float32Array( 2 ); min[ 0 ] = min[ 1 ] = Number.MAX_VALUE; max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE; for ( let i = 0; i < array.length; i += 2 ) { min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] ); min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] ); max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] ); max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] ); } decodeMat.scale( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments ); decodeMat.elements[ 6 ] = min[ 0 ]; decodeMat.elements[ 7 ] = min[ 1 ]; decodeMat.transpose(); const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0 ] ); for ( let i = 0; i < array.length; i += 2 ) { quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] ); quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] ); } return { quantized: quantized, decodeMat: decodeMat }; } } /** * `PackedPhongMaterial` inherited from THREE.MeshPhongMaterial * * @param {Object} parameters */ class PackedPhongMaterial extends THREE.MeshPhongMaterial { constructor( parameters ) { super(); this.defines = {}; this.type = 'PackedPhongMaterial'; this.uniforms = THREE.UniformsUtils.merge( [ THREE.ShaderLib.phong.uniforms, { quantizeMatPos: { value: null }, quantizeMatUV: { value: null } } ] ); this.vertexShader = [ '#define PHONG', 'varying vec3 vViewPosition;', '#ifndef FLAT_SHADED', 'varying vec3 vNormal;', '#endif', THREE.ShaderChunk.common, THREE.ShaderChunk.uv_pars_vertex, THREE.ShaderChunk.uv2_pars_vertex, THREE.ShaderChunk.displacementmap_pars_vertex, THREE.ShaderChunk.envmap_pars_vertex, THREE.ShaderChunk.color_pars_vertex, THREE.ShaderChunk.fog_pars_vertex, THREE.ShaderChunk.morphtarget_pars_vertex, THREE.ShaderChunk.skinning_pars_vertex, THREE.ShaderChunk.shadowmap_pars_vertex, THREE.ShaderChunk.logdepthbuf_pars_vertex, THREE.ShaderChunk.clipping_planes_pars_vertex, `#ifdef USE_PACKED_NORMAL #if USE_PACKED_NORMAL == 0 vec3 decodeNormal(vec3 packedNormal) { float x = packedNormal.x * 2.0 - 1.0; float y = packedNormal.y * 2.0 - 1.0; vec2 scth = vec2(sin(x * PI), cos(x * PI)); vec2 scphi = vec2(sqrt(1.0 - y * y), y); return normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) ); } #endif #if USE_PACKED_NORMAL == 1 vec3 decodeNormal(vec3 packedNormal) { vec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y)); if (v.z < 0.0) { v.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0); } return normalize(v); } #endif #if USE_PACKED_NORMAL == 2 vec3 decodeNormal(vec3 packedNormal) { vec3 v = (packedNormal * 2.0) - 1.0; return normalize(v); } #endif #endif`, `#ifdef USE_PACKED_POSITION #if USE_PACKED_POSITION == 0 uniform mat4 quantizeMatPos; #endif #endif`, `#ifdef USE_PACKED_UV #if USE_PACKED_UV == 1 uniform mat3 quantizeMatUV; #endif #endif`, `#ifdef USE_PACKED_UV #if USE_PACKED_UV == 0 vec2 decodeUV(vec2 packedUV) { vec2 uv = (packedUV * 2.0) - 1.0; return uv; } #endif #if USE_PACKED_UV == 1 vec2 decodeUV(vec2 packedUV) { vec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy; return uv; } #endif #endif`, 'void main() {', THREE.ShaderChunk.uv_vertex, `#ifdef USE_UV #ifdef USE_PACKED_UV vUv = decodeUV(vUv); #endif #endif`, THREE.ShaderChunk.uv2_vertex, THREE.ShaderChunk.color_vertex, THREE.ShaderChunk.beginnormal_vertex, `#ifdef USE_PACKED_NORMAL objectNormal = decodeNormal(objectNormal); #endif #ifdef USE_TANGENT vec3 objectTangent = vec3( tangent.xyz ); #endif `, THREE.ShaderChunk.morphnormal_vertex, THREE.ShaderChunk.skinbase_vertex, THREE.ShaderChunk.skinnormal_vertex, THREE.ShaderChunk.defaultnormal_vertex, '#ifndef FLAT_SHADED', ' vNormal = normalize( transformedNormal );', '#endif', THREE.ShaderChunk.begin_vertex, `#ifdef USE_PACKED_POSITION #if USE_PACKED_POSITION == 0 transformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz; #endif #endif`, THREE.ShaderChunk.morphtarget_vertex, THREE.ShaderChunk.skinning_vertex, THREE.ShaderChunk.displacementmap_vertex, THREE.ShaderChunk.project_vertex, THREE.ShaderChunk.logdepthbuf_vertex, THREE.ShaderChunk.clipping_planes_vertex, 'vViewPosition = - mvPosition.xyz;', THREE.ShaderChunk.worldpos_vertex, THREE.ShaderChunk.envmap_vertex, THREE.ShaderChunk.shadowmap_vertex, THREE.ShaderChunk.fog_vertex, '}' ].join( '\n' ); // Use the original THREE.MeshPhongMaterial's fragmentShader. this.fragmentShader = [ '#define PHONG', 'uniform vec3 diffuse;', 'uniform vec3 emissive;', 'uniform vec3 specular;', 'uniform float shininess;', 'uniform float opacity;', THREE.ShaderChunk.common, THREE.ShaderChunk.packing, THREE.ShaderChunk.dithering_pars_fragment, THREE.ShaderChunk.color_pars_fragment, THREE.ShaderChunk.uv_pars_fragment, THREE.ShaderChunk.uv2_pars_fragment, THREE.ShaderChunk.map_pars_fragment, THREE.ShaderChunk.alphamap_pars_fragment, THREE.ShaderChunk.aomap_pars_fragment, THREE.ShaderChunk.lightmap_pars_fragment, THREE.ShaderChunk.emissivemap_pars_fragment, THREE.ShaderChunk.envmap_common_pars_fragment, THREE.ShaderChunk.envmap_pars_fragment, THREE.ShaderChunk.cube_uv_reflection_fragment, THREE.ShaderChunk.fog_pars_fragment, THREE.ShaderChunk.bsdfs, THREE.ShaderChunk.lights_pars_begin, THREE.ShaderChunk.lights_phong_pars_fragment, THREE.ShaderChunk.shadowmap_pars_fragment, THREE.ShaderChunk.bumpmap_pars_fragment, THREE.ShaderChunk.normalmap_pars_fragment, THREE.ShaderChunk.specularmap_pars_fragment, THREE.ShaderChunk.logdepthbuf_pars_fragment, THREE.ShaderChunk.clipping_planes_pars_fragment, 'void main() {', THREE.ShaderChunk.clipping_planes_fragment, 'vec4 diffuseColor = vec4( diffuse, opacity );', 'ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );', 'vec3 totalEmissiveRadiance = emissive;', THREE.ShaderChunk.logdepthbuf_fragment, THREE.ShaderChunk.map_fragment, THREE.ShaderChunk.color_fragment, THREE.ShaderChunk.alphamap_fragment, THREE.ShaderChunk.alphatest_fragment, THREE.ShaderChunk.specularmap_fragment, THREE.ShaderChunk.normal_fragment_begin, THREE.ShaderChunk.normal_fragment_maps, THREE.ShaderChunk.emissivemap_fragment, // accumulation THREE.ShaderChunk.lights_phong_fragment, THREE.ShaderChunk.lights_fragment_begin, THREE.ShaderChunk.lights_fragment_maps, THREE.ShaderChunk.lights_fragment_end, // modulation THREE.ShaderChunk.aomap_fragment, 'vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;', THREE.ShaderChunk.envmap_fragment, 'gl_FragColor = vec4( outgoingLight, diffuseColor.a );', THREE.ShaderChunk.tonemapping_fragment, THREE.ShaderChunk.encodings_fragment, THREE.ShaderChunk.fog_fragment, THREE.ShaderChunk.premultiplied_alpha_fragment, THREE.ShaderChunk.dithering_fragment, '}' ].join( '\n' ); this.setValues( parameters ); } } THREE.GeometryCompressionUtils = GeometryCompressionUtils; THREE.PackedPhongMaterial = PackedPhongMaterial; } )();