( function () { const _cameraToLightMatrix = new THREE.Matrix4(); const _lightSpaceFrustum = new THREE.Frustum(); const _center = new THREE.Vector3(); const _bbox = new THREE.Box3(); const _uniformArray = []; const _logArray = []; class CSM { constructor( data ) { data = data || {}; this.camera = data.camera; this.parent = data.parent; this.cascades = data.cascades || 3; this.maxFar = data.maxFar || 100000; this.mode = data.mode || 'practical'; this.shadowMapSize = data.shadowMapSize || 2048; this.shadowBias = data.shadowBias || 0.000001; this.lightDirection = data.lightDirection || new THREE.Vector3( 1, - 1, 1 ).normalize(); this.lightIntensity = data.lightIntensity || 1; this.lightNear = data.lightNear || 1; this.lightFar = data.lightFar || 2000; this.lightMargin = data.lightMargin || 200; this.customSplitsCallback = data.customSplitsCallback; this.fade = false; this.mainFrustum = new THREE.Frustum(); this.frustums = []; this.breaks = []; this.lights = []; this.shaders = new Map(); this.createLights(); this.updateFrustums(); this.injectInclude(); } createLights() { for ( let i = 0; i < this.cascades; i ++ ) { const light = new THREE.DirectionalLight( 0xffffff, this.lightIntensity ); light.castShadow = true; light.shadow.mapSize.width = this.shadowMapSize; light.shadow.mapSize.height = this.shadowMapSize; light.shadow.camera.near = this.lightNear; light.shadow.camera.far = this.lightFar; light.shadow.bias = this.shadowBias; this.parent.add( light ); this.parent.add( light.target ); this.lights.push( light ); } } initCascades() { const camera = this.camera; camera.updateProjectionMatrix(); this.mainFrustum.setFromProjectionMatrix( camera.projectionMatrix, this.maxFar ); this.mainFrustum.split( this.breaks, this.frustums ); } updateShadowBounds() { const frustums = this.frustums; for ( let i = 0; i < frustums.length; i ++ ) { const light = this.lights[ i ]; const shadowCam = light.shadow.camera; const frustum = this.frustums[ i ]; // Get the two points that represent that furthest points on the frustum assuming // that's either the diagonal across the far plane or the diagonal across the whole // frustum itself. const nearVerts = frustum.vertices.near; const farVerts = frustum.vertices.far; const point1 = farVerts[ 0 ]; let point2; if ( point1.distanceTo( farVerts[ 2 ] ) > point1.distanceTo( nearVerts[ 2 ] ) ) { point2 = farVerts[ 2 ]; } else { point2 = nearVerts[ 2 ]; } let squaredBBWidth = point1.distanceTo( point2 ); if ( this.fade ) { // expand the shadow extents by the fade margin if fade is enabled. const camera = this.camera; const far = Math.max( camera.far, this.maxFar ); const linearDepth = frustum.vertices.far[ 0 ].z / ( far - camera.near ); const margin = 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near ); squaredBBWidth += margin; } shadowCam.left = - squaredBBWidth / 2; shadowCam.right = squaredBBWidth / 2; shadowCam.top = squaredBBWidth / 2; shadowCam.bottom = - squaredBBWidth / 2; shadowCam.updateProjectionMatrix(); } } getBreaks() { const camera = this.camera; const far = Math.min( camera.far, this.maxFar ); this.breaks.length = 0; switch ( this.mode ) { case 'uniform': uniformSplit( this.cascades, camera.near, far, this.breaks ); break; case 'logarithmic': logarithmicSplit( this.cascades, camera.near, far, this.breaks ); break; case 'practical': practicalSplit( this.cascades, camera.near, far, 0.5, this.breaks ); break; case 'custom': if ( this.customSplitsCallback === undefined ) console.error( 'CSM: Custom split scheme callback not defined.' ); this.customSplitsCallback( this.cascades, camera.near, far, this.breaks ); break; } function uniformSplit( amount, near, far, target ) { for ( let i = 1; i < amount; i ++ ) { target.push( ( near + ( far - near ) * i / amount ) / far ); } target.push( 1 ); } function logarithmicSplit( amount, near, far, target ) { for ( let i = 1; i < amount; i ++ ) { target.push( near * ( far / near ) ** ( i / amount ) / far ); } target.push( 1 ); } function practicalSplit( amount, near, far, lambda, target ) { _uniformArray.length = 0; _logArray.length = 0; logarithmicSplit( amount, near, far, _logArray ); uniformSplit( amount, near, far, _uniformArray ); for ( let i = 1; i < amount; i ++ ) { target.push( THREE.MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) ); } target.push( 1 ); } } update() { const camera = this.camera; const frustums = this.frustums; for ( let i = 0; i < frustums.length; i ++ ) { const light = this.lights[ i ]; const shadowCam = light.shadow.camera; const texelWidth = ( shadowCam.right - shadowCam.left ) / this.shadowMapSize; const texelHeight = ( shadowCam.top - shadowCam.bottom ) / this.shadowMapSize; light.shadow.camera.updateMatrixWorld( true ); _cameraToLightMatrix.multiplyMatrices( light.shadow.camera.matrixWorldInverse, camera.matrixWorld ); frustums[ i ].toSpace( _cameraToLightMatrix, _lightSpaceFrustum ); const nearVerts = _lightSpaceFrustum.vertices.near; const farVerts = _lightSpaceFrustum.vertices.far; _bbox.makeEmpty(); for ( let j = 0; j < 4; j ++ ) { _bbox.expandByPoint( nearVerts[ j ] ); _bbox.expandByPoint( farVerts[ j ] ); } _bbox.getCenter( _center ); _center.z = _bbox.max.z + this.lightMargin; _center.x = Math.floor( _center.x / texelWidth ) * texelWidth; _center.y = Math.floor( _center.y / texelHeight ) * texelHeight; _center.applyMatrix4( light.shadow.camera.matrixWorld ); light.position.copy( _center ); light.target.position.copy( _center ); light.target.position.x += this.lightDirection.x; light.target.position.y += this.lightDirection.y; light.target.position.z += this.lightDirection.z; } } injectInclude() { THREE.ShaderChunk.lights_fragment_begin = THREE.CSMShader.lights_fragment_begin; THREE.ShaderChunk.lights_pars_begin = THREE.CSMShader.lights_pars_begin; } setupMaterial( material ) { material.defines = material.defines || {}; material.defines.USE_CSM = 1; material.defines.CSM_CASCADES = this.cascades; if ( this.fade ) { material.defines.CSM_FADE = ''; } const breaksVec2 = []; const scope = this; const shaders = this.shaders; material.onBeforeCompile = function ( shader ) { const far = Math.min( scope.camera.far, scope.maxFar ); scope.getExtendedBreaks( breaksVec2 ); shader.uniforms.CSM_cascades = { value: breaksVec2 }; shader.uniforms.cameraNear = { value: scope.camera.near }; shader.uniforms.shadowFar = { value: far }; shaders.set( material, shader ); }; shaders.set( material, null ); } updateUniforms() { const far = Math.min( this.camera.far, this.maxFar ); const shaders = this.shaders; shaders.forEach( function ( shader, material ) { if ( shader !== null ) { const uniforms = shader.uniforms; this.getExtendedBreaks( uniforms.CSM_cascades.value ); uniforms.cameraNear.value = this.camera.near; uniforms.shadowFar.value = far; } if ( ! this.fade && 'CSM_FADE' in material.defines ) { delete material.defines.CSM_FADE; material.needsUpdate = true; } else if ( this.fade && ! ( 'CSM_FADE' in material.defines ) ) { material.defines.CSM_FADE = ''; material.needsUpdate = true; } }, this ); } getExtendedBreaks( target ) { while ( target.length < this.breaks.length ) { target.push( new THREE.Vector2() ); } target.length = this.breaks.length; for ( let i = 0; i < this.cascades; i ++ ) { const amount = this.breaks[ i ]; const prev = this.breaks[ i - 1 ] || 0; target[ i ].x = prev; target[ i ].y = amount; } } updateFrustums() { this.getBreaks(); this.initCascades(); this.updateShadowBounds(); this.updateUniforms(); } remove() { for ( let i = 0; i < this.lights.length; i ++ ) { this.parent.remove( this.lights[ i ] ); } } dispose() { const shaders = this.shaders; shaders.forEach( function ( shader, material ) { delete material.onBeforeCompile; delete material.defines.USE_CSM; delete material.defines.CSM_CASCADES; delete material.defines.CSM_FADE; if ( shader !== null ) { delete shader.uniforms.CSM_cascades; delete shader.uniforms.cameraNear; delete shader.uniforms.shadowFar; } material.needsUpdate = true; } ); shaders.clear(); } } THREE.CSM = CSM; } )();