three 基础库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1657 lines
37 KiB

2 years ago
( function () {
const _m1 = new THREE.Matrix4();
const _obj = new THREE.Object3D();
const _offset = new THREE.Vector3();
class Geometry extends THREE.EventDispatcher {
constructor() {
super();
this.uuid = THREE.MathUtils.generateUUID();
this.name = '';
this.type = 'Geometry';
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null; // update flags
this.elementsNeedUpdate = false;
this.verticesNeedUpdate = false;
this.uvsNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.lineDistancesNeedUpdate = false;
this.groupsNeedUpdate = false;
}
applyMatrix4( matrix ) {
const normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {
const vertex = this.vertices[ i ];
vertex.applyMatrix4( matrix );
}
for ( let i = 0, il = this.faces.length; i < il; i ++ ) {
const face = this.faces[ i ];
face.normal.applyMatrix3( normalMatrix ).normalize();
for ( let j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {
face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();
}
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
this.verticesNeedUpdate = true;
this.normalsNeedUpdate = true;
return this;
}
rotateX( angle ) {
// rotate geometry around world x-axis
_m1.makeRotationX( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateY( angle ) {
// rotate geometry around world y-axis
_m1.makeRotationY( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateZ( angle ) {
// rotate geometry around world z-axis
_m1.makeRotationZ( angle );
this.applyMatrix4( _m1 );
return this;
}
translate( x, y, z ) {
// translate geometry
_m1.makeTranslation( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
scale( x, y, z ) {
// scale geometry
_m1.makeScale( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
lookAt( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
}
fromBufferGeometry( geometry ) {
const scope = this;
const index = geometry.index !== null ? geometry.index : undefined;
const attributes = geometry.attributes;
if ( attributes.position === undefined ) {
console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' );
return this;
}
const position = attributes.position;
const normal = attributes.normal;
const color = attributes.color;
const uv = attributes.uv;
const uv2 = attributes.uv2;
if ( uv2 !== undefined ) this.faceVertexUvs[ 1 ] = [];
for ( let i = 0; i < position.count; i ++ ) {
scope.vertices.push( new THREE.Vector3().fromBufferAttribute( position, i ) );
if ( color !== undefined ) {
scope.colors.push( new THREE.Color().fromBufferAttribute( color, i ) );
}
}
function addFace( a, b, c, materialIndex ) {
const vertexColors = color === undefined ? [] : [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ];
const vertexNormals = normal === undefined ? [] : [ new THREE.Vector3().fromBufferAttribute( normal, a ), new THREE.Vector3().fromBufferAttribute( normal, b ), new THREE.Vector3().fromBufferAttribute( normal, c ) ];
const face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );
scope.faces.push( face );
if ( uv !== undefined ) {
scope.faceVertexUvs[ 0 ].push( [ new THREE.Vector2().fromBufferAttribute( uv, a ), new THREE.Vector2().fromBufferAttribute( uv, b ), new THREE.Vector2().fromBufferAttribute( uv, c ) ] );
}
if ( uv2 !== undefined ) {
scope.faceVertexUvs[ 1 ].push( [ new THREE.Vector2().fromBufferAttribute( uv2, a ), new THREE.Vector2().fromBufferAttribute( uv2, b ), new THREE.Vector2().fromBufferAttribute( uv2, c ) ] );
}
}
const groups = geometry.groups;
if ( groups.length > 0 ) {
for ( let i = 0; i < groups.length; i ++ ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
if ( index !== undefined ) {
addFace( index.getX( j ), index.getX( j + 1 ), index.getX( j + 2 ), group.materialIndex );
} else {
addFace( j, j + 1, j + 2, group.materialIndex );
}
}
}
} else {
if ( index !== undefined ) {
for ( let i = 0; i < index.count; i += 3 ) {
addFace( index.getX( i ), index.getX( i + 1 ), index.getX( i + 2 ) );
}
} else {
for ( let i = 0; i < position.count; i += 3 ) {
addFace( i, i + 1, i + 2 );
}
}
}
this.computeFaceNormals();
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
return this;
}
center() {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
}
normalize() {
this.computeBoundingSphere();
const center = this.boundingSphere.center;
const radius = this.boundingSphere.radius;
const s = radius === 0 ? 1 : 1.0 / radius;
const matrix = new THREE.Matrix4();
matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 );
this.applyMatrix4( matrix );
return this;
}
computeFaceNormals() {
const cb = new THREE.Vector3(),
ab = new THREE.Vector3();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vA = this.vertices[ face.a ];
const vB = this.vertices[ face.b ];
const vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
cb.normalize();
face.normal.copy( cb );
}
}
computeVertexNormals( areaWeighted = true ) {
const vertices = new Array( this.vertices.length );
for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ] = new THREE.Vector3();
}
if ( areaWeighted ) {
// vertex normals weighted by triangle areas
// http://www.iquilezles.org/www/articles/normals/normals.htm
const cb = new THREE.Vector3(),
ab = new THREE.Vector3();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vA = this.vertices[ face.a ];
const vB = this.vertices[ face.b ];
const vC = this.vertices[ face.c ];
cb.subVectors( vC, vB );
ab.subVectors( vA, vB );
cb.cross( ab );
vertices[ face.a ].add( cb );
vertices[ face.b ].add( cb );
vertices[ face.c ].add( cb );
}
} else {
this.computeFaceNormals();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
vertices[ face.a ].add( face.normal );
vertices[ face.b ].add( face.normal );
vertices[ face.c ].add( face.normal );
}
}
for ( let v = 0, vl = this.vertices.length; v < vl; v ++ ) {
vertices[ v ].normalize();
}
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( vertices[ face.a ] );
vertexNormals[ 1 ].copy( vertices[ face.b ] );
vertexNormals[ 2 ].copy( vertices[ face.c ] );
} else {
vertexNormals[ 0 ] = vertices[ face.a ].clone();
vertexNormals[ 1 ] = vertices[ face.b ].clone();
vertexNormals[ 2 ] = vertices[ face.c ].clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
}
computeFlatVertexNormals() {
this.computeFaceNormals();
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
vertexNormals[ 0 ].copy( face.normal );
vertexNormals[ 1 ].copy( face.normal );
vertexNormals[ 2 ].copy( face.normal );
} else {
vertexNormals[ 0 ] = face.normal.clone();
vertexNormals[ 1 ] = face.normal.clone();
vertexNormals[ 2 ] = face.normal.clone();
}
}
if ( this.faces.length > 0 ) {
this.normalsNeedUpdate = true;
}
}
computeMorphNormals() {
// save original normals
// - create temp variables on first access
// otherwise just copy (for faster repeated calls)
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
if ( ! face.__originalFaceNormal ) {
face.__originalFaceNormal = face.normal.clone();
} else {
face.__originalFaceNormal.copy( face.normal );
}
if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];
for ( let i = 0, il = face.vertexNormals.length; i < il; i ++ ) {
if ( ! face.__originalVertexNormals[ i ] ) {
face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();
} else {
face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );
}
}
} // use temp geometry to compute face and vertex normals for each morph
const tmpGeo = new Geometry();
tmpGeo.faces = this.faces;
for ( let i = 0, il = this.morphTargets.length; i < il; i ++ ) {
// create on first access
if ( ! this.morphNormals[ i ] ) {
this.morphNormals[ i ] = {};
this.morphNormals[ i ].faceNormals = [];
this.morphNormals[ i ].vertexNormals = [];
const dstNormalsFace = this.morphNormals[ i ].faceNormals;
const dstNormalsVertex = this.morphNormals[ i ].vertexNormals;
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const faceNormal = new THREE.Vector3();
const vertexNormals = {
a: new THREE.Vector3(),
b: new THREE.Vector3(),
c: new THREE.Vector3()
};
dstNormalsFace.push( faceNormal );
dstNormalsVertex.push( vertexNormals );
}
}
const morphNormals = this.morphNormals[ i ]; // set vertices to morph target
tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals
tmpGeo.computeFaceNormals();
tmpGeo.computeVertexNormals(); // store morph normals
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
const faceNormal = morphNormals.faceNormals[ f ];
const vertexNormals = morphNormals.vertexNormals[ f ];
faceNormal.copy( face.normal );
vertexNormals.a.copy( face.vertexNormals[ 0 ] );
vertexNormals.b.copy( face.vertexNormals[ 1 ] );
vertexNormals.c.copy( face.vertexNormals[ 2 ] );
}
} // restore original normals
for ( let f = 0, fl = this.faces.length; f < fl; f ++ ) {
const face = this.faces[ f ];
face.normal = face.__originalFaceNormal;
face.vertexNormals = face.__originalVertexNormals;
}
}
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new THREE.Box3();
}
this.boundingBox.setFromPoints( this.vertices );
}
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new THREE.Sphere();
}
this.boundingSphere.setFromPoints( this.vertices );
}
merge( geometry, matrix, materialIndexOffset = 0 ) {
if ( ! ( geometry && geometry.isGeometry ) ) {
console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
return;
}
let normalMatrix;
const vertexOffset = this.vertices.length,
vertices1 = this.vertices,
vertices2 = geometry.vertices,
faces1 = this.faces,
faces2 = geometry.faces,
colors1 = this.colors,
colors2 = geometry.colors;
if ( matrix !== undefined ) {
normalMatrix = new THREE.Matrix3().getNormalMatrix( matrix );
} // vertices
for ( let i = 0, il = vertices2.length; i < il; i ++ ) {
const vertex = vertices2[ i ];
const vertexCopy = vertex.clone();
if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );
vertices1.push( vertexCopy );
} // colors
for ( let i = 0, il = colors2.length; i < il; i ++ ) {
colors1.push( colors2[ i ].clone() );
} // faces
for ( let i = 0, il = faces2.length; i < il; i ++ ) {
const face = faces2[ i ];
let normal, color;
const faceVertexNormals = face.vertexNormals,
faceVertexColors = face.vertexColors;
const faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
faceCopy.normal.copy( face.normal );
if ( normalMatrix !== undefined ) {
faceCopy.normal.applyMatrix3( normalMatrix ).normalize();
}
for ( let j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {
normal = faceVertexNormals[ j ].clone();
if ( normalMatrix !== undefined ) {
normal.applyMatrix3( normalMatrix ).normalize();
}
faceCopy.vertexNormals.push( normal );
}
faceCopy.color.copy( face.color );
for ( let j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {
color = faceVertexColors[ j ];
faceCopy.vertexColors.push( color.clone() );
}
faceCopy.materialIndex = face.materialIndex + materialIndexOffset;
faces1.push( faceCopy );
} // uvs
for ( let i = 0, il = geometry.faceVertexUvs.length; i < il; i ++ ) {
const faceVertexUvs2 = geometry.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) this.faceVertexUvs[ i ] = [];
for ( let j = 0, jl = faceVertexUvs2.length; j < jl; j ++ ) {
const uvs2 = faceVertexUvs2[ j ],
uvsCopy = [];
for ( let k = 0, kl = uvs2.length; k < kl; k ++ ) {
uvsCopy.push( uvs2[ k ].clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
}
}
mergeMesh( mesh ) {
if ( ! ( mesh && mesh.isMesh ) ) {
console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
return;
}
if ( mesh.matrixAutoUpdate ) mesh.updateMatrix();
this.merge( mesh.geometry, mesh.matrix );
}
/*
* Checks for duplicate vertices with hashmap.
* Duplicated vertices are removed
* and faces' vertices are updated.
*/
mergeVertices( precisionPoints = 4 ) {
const verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
const unique = [],
changes = [];
const precision = Math.pow( 10, precisionPoints );
for ( let i = 0, il = this.vertices.length; i < il; i ++ ) {
const v = this.vertices[ i ];
const key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );
if ( verticesMap[ key ] === undefined ) {
verticesMap[ key ] = i;
unique.push( this.vertices[ i ] );
changes[ i ] = unique.length - 1;
} else {
//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
changes[ i ] = changes[ verticesMap[ key ] ];
}
} // if faces are completely degenerate after merging vertices, we
// have to remove them from the geometry.
const faceIndicesToRemove = [];
for ( let i = 0, il = this.faces.length; i < il; i ++ ) {
const face = this.faces[ i ];
face.a = changes[ face.a ];
face.b = changes[ face.b ];
face.c = changes[ face.c ];
const indices = [ face.a, face.b, face.c ]; // if any duplicate vertices are found in a Face3
// we have to remove the face as nothing can be saved
for ( let n = 0; n < 3; n ++ ) {
if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {
faceIndicesToRemove.push( i );
break;
}
}
}
for ( let i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {
const idx = faceIndicesToRemove[ i ];
this.faces.splice( idx, 1 );
for ( let j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {
this.faceVertexUvs[ j ].splice( idx, 1 );
}
} // Use unique set of vertices
const diff = this.vertices.length - unique.length;
this.vertices = unique;
return diff;
}
setFromPoints( points ) {
this.vertices = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
this.vertices.push( new THREE.Vector3( point.x, point.y, point.z || 0 ) );
}
return this;
}
sortFacesByMaterialIndex() {
const faces = this.faces;
const length = faces.length; // tag faces
for ( let i = 0; i < length; i ++ ) {
faces[ i ]._id = i;
} // sort faces
function materialIndexSort( a, b ) {
return a.materialIndex - b.materialIndex;
}
faces.sort( materialIndexSort ); // sort uvs
const uvs1 = this.faceVertexUvs[ 0 ];
const uvs2 = this.faceVertexUvs[ 1 ];
let newUvs1, newUvs2;
if ( uvs1 && uvs1.length === length ) newUvs1 = [];
if ( uvs2 && uvs2.length === length ) newUvs2 = [];
for ( let i = 0; i < length; i ++ ) {
const id = faces[ i ]._id;
if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
if ( newUvs2 ) newUvs2.push( uvs2[ id ] );
}
if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: 'Geometry',
generator: 'Geometry.toJSON'
}
}; // standard Geometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
const vertices = [];
for ( let i = 0; i < this.vertices.length; i ++ ) {
const vertex = this.vertices[ i ];
vertices.push( vertex.x, vertex.y, vertex.z );
}
const faces = [];
const normals = [];
const normalsHash = {};
const colors = [];
const colorsHash = {};
const uvs = [];
const uvsHash = {};
for ( let i = 0; i < this.faces.length; i ++ ) {
const face = this.faces[ i ];
const hasMaterial = true;
const hasFaceUv = false; // deprecated
const hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
const hasFaceNormal = face.normal.length() > 0;
const hasFaceVertexNormal = face.vertexNormals.length > 0;
const hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
const hasFaceVertexColor = face.vertexColors.length > 0;
let faceType = 0;
faceType = setBit( faceType, 0, 0 ); // isQuad
faceType = setBit( faceType, 1, hasMaterial );
faceType = setBit( faceType, 2, hasFaceUv );
faceType = setBit( faceType, 3, hasFaceVertexUv );
faceType = setBit( faceType, 4, hasFaceNormal );
faceType = setBit( faceType, 5, hasFaceVertexNormal );
faceType = setBit( faceType, 6, hasFaceColor );
faceType = setBit( faceType, 7, hasFaceVertexColor );
faces.push( faceType );
faces.push( face.a, face.b, face.c );
faces.push( face.materialIndex );
if ( hasFaceVertexUv ) {
const faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];
faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) );
}
if ( hasFaceNormal ) {
faces.push( getNormalIndex( face.normal ) );
}
if ( hasFaceVertexNormal ) {
const vertexNormals = face.vertexNormals;
faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) );
}
if ( hasFaceColor ) {
faces.push( getColorIndex( face.color ) );
}
if ( hasFaceVertexColor ) {
const vertexColors = face.vertexColors;
faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) );
}
}
function setBit( value, position, enabled ) {
return enabled ? value | 1 << position : value & ~ ( 1 << position );
}
function getNormalIndex( normal ) {
const hash = normal.x.toString() + normal.y.toString() + normal.z.toString();
if ( normalsHash[ hash ] !== undefined ) {
return normalsHash[ hash ];
}
normalsHash[ hash ] = normals.length / 3;
normals.push( normal.x, normal.y, normal.z );
return normalsHash[ hash ];
}
function getColorIndex( color ) {
const hash = color.r.toString() + color.g.toString() + color.b.toString();
if ( colorsHash[ hash ] !== undefined ) {
return colorsHash[ hash ];
}
colorsHash[ hash ] = colors.length;
colors.push( color.getHex() );
return colorsHash[ hash ];
}
function getUvIndex( uv ) {
const hash = uv.x.toString() + uv.y.toString();
if ( uvsHash[ hash ] !== undefined ) {
return uvsHash[ hash ];
}
uvsHash[ hash ] = uvs.length / 2;
uvs.push( uv.x, uv.y );
return uvsHash[ hash ];
}
data.data = {};
data.data.vertices = vertices;
data.data.normals = normals;
if ( colors.length > 0 ) data.data.colors = colors;
if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
data.data.faces = faces;
return data;
}
clone() {
/*
// Handle primitives
const parameters = this.parameters;
if ( parameters !== undefined ) {
const values = [];
for ( const key in parameters ) {
values.push( parameters[ key ] );
}
const geometry = Object.create( this.constructor.prototype );
this.constructor.apply( geometry, values );
return geometry;
}
return new this.constructor().copy( this );
*/
return new Geometry().copy( this );
}
copy( source ) {
// reset
this.vertices = [];
this.colors = [];
this.faces = [];
this.faceVertexUvs = [[]];
this.morphTargets = [];
this.morphNormals = [];
this.skinWeights = [];
this.skinIndices = [];
this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null; // name
this.name = source.name; // vertices
const vertices = source.vertices;
for ( let i = 0, il = vertices.length; i < il; i ++ ) {
this.vertices.push( vertices[ i ].clone() );
} // colors
const colors = source.colors;
for ( let i = 0, il = colors.length; i < il; i ++ ) {
this.colors.push( colors[ i ].clone() );
} // faces
const faces = source.faces;
for ( let i = 0, il = faces.length; i < il; i ++ ) {
this.faces.push( faces[ i ].clone() );
} // face vertex uvs
for ( let i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {
const faceVertexUvs = source.faceVertexUvs[ i ];
if ( this.faceVertexUvs[ i ] === undefined ) {
this.faceVertexUvs[ i ] = [];
}
for ( let j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {
const uvs = faceVertexUvs[ j ],
uvsCopy = [];
for ( let k = 0, kl = uvs.length; k < kl; k ++ ) {
const uv = uvs[ k ];
uvsCopy.push( uv.clone() );
}
this.faceVertexUvs[ i ].push( uvsCopy );
}
} // morph targets
const morphTargets = source.morphTargets;
for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {
const morphTarget = {};
morphTarget.name = morphTargets[ i ].name; // vertices
if ( morphTargets[ i ].vertices !== undefined ) {
morphTarget.vertices = [];
for ( let j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {
morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );
}
} // normals
if ( morphTargets[ i ].normals !== undefined ) {
morphTarget.normals = [];
for ( let j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {
morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );
}
}
this.morphTargets.push( morphTarget );
} // morph normals
const morphNormals = source.morphNormals;
for ( let i = 0, il = morphNormals.length; i < il; i ++ ) {
const morphNormal = {}; // vertex normals
if ( morphNormals[ i ].vertexNormals !== undefined ) {
morphNormal.vertexNormals = [];
for ( let j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {
const srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
const destVertexNormal = {};
destVertexNormal.a = srcVertexNormal.a.clone();
destVertexNormal.b = srcVertexNormal.b.clone();
destVertexNormal.c = srcVertexNormal.c.clone();
morphNormal.vertexNormals.push( destVertexNormal );
}
} // face normals
if ( morphNormals[ i ].faceNormals !== undefined ) {
morphNormal.faceNormals = [];
for ( let j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {
morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );
}
}
this.morphNormals.push( morphNormal );
} // skin weights
const skinWeights = source.skinWeights;
for ( let i = 0, il = skinWeights.length; i < il; i ++ ) {
this.skinWeights.push( skinWeights[ i ].clone() );
} // skin indices
const skinIndices = source.skinIndices;
for ( let i = 0, il = skinIndices.length; i < il; i ++ ) {
this.skinIndices.push( skinIndices[ i ].clone() );
} // line distances
const lineDistances = source.lineDistances;
for ( let i = 0, il = lineDistances.length; i < il; i ++ ) {
this.lineDistances.push( lineDistances[ i ] );
} // bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
} // bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
} // update flags
this.elementsNeedUpdate = source.elementsNeedUpdate;
this.verticesNeedUpdate = source.verticesNeedUpdate;
this.uvsNeedUpdate = source.uvsNeedUpdate;
this.normalsNeedUpdate = source.normalsNeedUpdate;
this.colorsNeedUpdate = source.colorsNeedUpdate;
this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
this.groupsNeedUpdate = source.groupsNeedUpdate;
return this;
}
toBufferGeometry() {
const geometry = new DirectGeometry().fromGeometry( this );
const buffergeometry = new THREE.BufferGeometry();
const positions = new Float32Array( geometry.vertices.length * 3 );
buffergeometry.setAttribute( 'position', new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );
if ( geometry.normals.length > 0 ) {
const normals = new Float32Array( geometry.normals.length * 3 );
buffergeometry.setAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );
}
if ( geometry.colors.length > 0 ) {
const colors = new Float32Array( geometry.colors.length * 3 );
buffergeometry.setAttribute( 'color', new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );
}
if ( geometry.uvs.length > 0 ) {
const uvs = new Float32Array( geometry.uvs.length * 2 );
buffergeometry.setAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );
}
if ( geometry.uvs2.length > 0 ) {
const uvs2 = new Float32Array( geometry.uvs2.length * 2 );
buffergeometry.setAttribute( 'uv2', new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );
} // groups
buffergeometry.groups = geometry.groups; // morphs
for ( const name in geometry.morphTargets ) {
const array = [];
const morphTargets = geometry.morphTargets[ name ];
for ( let i = 0, l = morphTargets.length; i < l; i ++ ) {
const morphTarget = morphTargets[ i ];
const attribute = new THREE.Float32BufferAttribute( morphTarget.data.length * 3, 3 );
attribute.name = morphTarget.name;
array.push( attribute.copyVector3sArray( morphTarget.data ) );
}
buffergeometry.morphAttributes[ name ] = array;
} // skinning
if ( geometry.skinIndices.length > 0 ) {
const skinIndices = new THREE.Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
buffergeometry.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );
}
if ( geometry.skinWeights.length > 0 ) {
const skinWeights = new THREE.Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
buffergeometry.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );
} //
if ( geometry.boundingSphere !== null ) {
buffergeometry.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
buffergeometry.boundingBox = geometry.boundingBox.clone();
}
return buffergeometry;
}
computeTangents() {
console.error( 'THREE.Geometry: .computeTangents() has been removed.' );
}
computeLineDistances() {
console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );
}
applyMatrix( matrix ) {
console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' );
return this.applyMatrix4( matrix );
}
dispose() {
this.dispatchEvent( {
type: 'dispose'
} );
}
static createBufferGeometryFromObject( object ) {
let buffergeometry = new THREE.BufferGeometry();
const geometry = object.geometry;
if ( object.isPoints || object.isLine ) {
const positions = new THREE.Float32BufferAttribute( geometry.vertices.length * 3, 3 );
const colors = new THREE.Float32BufferAttribute( geometry.colors.length * 3, 3 );
buffergeometry.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
buffergeometry.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) );
if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {
const lineDistances = new THREE.Float32BufferAttribute( geometry.lineDistances.length, 1 );
buffergeometry.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );
}
if ( geometry.boundingSphere !== null ) {
buffergeometry.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
buffergeometry.boundingBox = geometry.boundingBox.clone();
}
} else if ( object.isMesh ) {
buffergeometry = geometry.toBufferGeometry();
}
return buffergeometry;
}
}
Geometry.prototype.isGeometry = true;
class DirectGeometry {
constructor() {
this.vertices = [];
this.normals = [];
this.colors = [];
this.uvs = [];
this.uvs2 = [];
this.groups = [];
this.morphTargets = {};
this.skinWeights = [];
this.skinIndices = []; // this.lineDistances = [];
this.boundingBox = null;
this.boundingSphere = null; // update flags
this.verticesNeedUpdate = false;
this.normalsNeedUpdate = false;
this.colorsNeedUpdate = false;
this.uvsNeedUpdate = false;
this.groupsNeedUpdate = false;
}
computeGroups( geometry ) {
const groups = [];
let group, i;
let materialIndex = undefined;
const faces = geometry.faces;
for ( i = 0; i < faces.length; i ++ ) {
const face = faces[ i ]; // materials
if ( face.materialIndex !== materialIndex ) {
materialIndex = face.materialIndex;
if ( group !== undefined ) {
group.count = i * 3 - group.start;
groups.push( group );
}
group = {
start: i * 3,
materialIndex: materialIndex
};
}
}
if ( group !== undefined ) {
group.count = i * 3 - group.start;
groups.push( group );
}
this.groups = groups;
}
fromGeometry( geometry ) {
const faces = geometry.faces;
const vertices = geometry.vertices;
const faceVertexUvs = geometry.faceVertexUvs;
const hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
const hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; // morphs
const morphTargets = geometry.morphTargets;
const morphTargetsLength = morphTargets.length;
let morphTargetsPosition;
if ( morphTargetsLength > 0 ) {
morphTargetsPosition = [];
for ( let i = 0; i < morphTargetsLength; i ++ ) {
morphTargetsPosition[ i ] = {
name: morphTargets[ i ].name,
data: []
};
}
this.morphTargets.position = morphTargetsPosition;
}
const morphNormals = geometry.morphNormals;
const morphNormalsLength = morphNormals.length;
let morphTargetsNormal;
if ( morphNormalsLength > 0 ) {
morphTargetsNormal = [];
for ( let i = 0; i < morphNormalsLength; i ++ ) {
morphTargetsNormal[ i ] = {
name: morphNormals[ i ].name,
data: []
};
}
this.morphTargets.normal = morphTargetsNormal;
} // skins
const skinIndices = geometry.skinIndices;
const skinWeights = geometry.skinWeights;
const hasSkinIndices = skinIndices.length === vertices.length;
const hasSkinWeights = skinWeights.length === vertices.length; //
if ( vertices.length > 0 && faces.length === 0 ) {
console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );
}
for ( let i = 0; i < faces.length; i ++ ) {
const face = faces[ i ];
this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );
const vertexNormals = face.vertexNormals;
if ( vertexNormals.length === 3 ) {
this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );
} else {
const normal = face.normal;
this.normals.push( normal, normal, normal );
}
const vertexColors = face.vertexColors;
if ( vertexColors.length === 3 ) {
this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );
} else {
const color = face.color;
this.colors.push( color, color, color );
}
if ( hasFaceVertexUv === true ) {
const vertexUvs = faceVertexUvs[ 0 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );
this.uvs.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
}
if ( hasFaceVertexUv2 === true ) {
const vertexUvs = faceVertexUvs[ 1 ][ i ];
if ( vertexUvs !== undefined ) {
this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );
} else {
console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );
this.uvs2.push( new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2() );
}
} // morphs
for ( let j = 0; j < morphTargetsLength; j ++ ) {
const morphTarget = morphTargets[ j ].vertices;
morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );
}
for ( let j = 0; j < morphNormalsLength; j ++ ) {
const morphNormal = morphNormals[ j ].vertexNormals[ i ];
morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );
} // skins
if ( hasSkinIndices ) {
this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );
}
if ( hasSkinWeights ) {
this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );
}
}
this.computeGroups( geometry );
this.verticesNeedUpdate = geometry.verticesNeedUpdate;
this.normalsNeedUpdate = geometry.normalsNeedUpdate;
this.colorsNeedUpdate = geometry.colorsNeedUpdate;
this.uvsNeedUpdate = geometry.uvsNeedUpdate;
this.groupsNeedUpdate = geometry.groupsNeedUpdate;
if ( geometry.boundingSphere !== null ) {
this.boundingSphere = geometry.boundingSphere.clone();
}
if ( geometry.boundingBox !== null ) {
this.boundingBox = geometry.boundingBox.clone();
}
return this;
}
}
class Face3 {
constructor( a, b, c, normal, color, materialIndex = 0 ) {
this.a = a;
this.b = b;
this.c = c;
this.normal = normal && normal.isVector3 ? normal : new THREE.Vector3();
this.vertexNormals = Array.isArray( normal ) ? normal : [];
this.color = color && color.isColor ? color : new THREE.Color();
this.vertexColors = Array.isArray( color ) ? color : [];
this.materialIndex = materialIndex;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.a = source.a;
this.b = source.b;
this.c = source.c;
this.normal.copy( source.normal );
this.color.copy( source.color );
this.materialIndex = source.materialIndex;
for ( let i = 0, il = source.vertexNormals.length; i < il; i ++ ) {
this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();
}
for ( let i = 0, il = source.vertexColors.length; i < il; i ++ ) {
this.vertexColors[ i ] = source.vertexColors[ i ].clone();
}
return this;
}
}
THREE.Face3 = Face3;
THREE.Geometry = Geometry;
} )();