You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

525 lines
17 KiB

/*
* H.265 video codec.
* Copyright (c) 2013-2014 struktur AG, Dirk Farin <farin@struktur.de>
*
* This file is part of libde265.
*
* libde265 is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libde265 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with libde265. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sao.h"
#include "util.h"
#include <stdlib.h>
#include <string.h>
template <class pixel_t>
void apply_sao_internal(de265_image* img, int xCtb,int yCtb,
const slice_segment_header* shdr, int cIdx, int nSW,int nSH,
const pixel_t* in_img, int in_stride,
/* */ pixel_t* out_img, int out_stride)
{
const sao_info* saoinfo = img->get_sao_info(xCtb,yCtb);
int SaoTypeIdx = (saoinfo->SaoTypeIdx >> (2*cIdx)) & 0x3;
logtrace(LogSAO,"apply_sao CTB %d;%d cIdx:%d type=%d (%dx%d)\n",xCtb,yCtb,cIdx, SaoTypeIdx, nSW,nSH);
if (SaoTypeIdx==0) {
return;
}
const seq_parameter_set* sps = &img->get_sps();
const pic_parameter_set* pps = &img->get_pps();
const int bitDepth = (cIdx==0 ? sps->BitDepth_Y : sps->BitDepth_C);
const int maxPixelValue = (1<<bitDepth)-1;
// top left position of CTB in pixels
const int xC = xCtb*nSW;
const int yC = yCtb*nSH;
const int width = img->get_width(cIdx);
const int height = img->get_height(cIdx);
const int ctbSliceAddrRS = img->get_SliceHeader(xC,yC)->SliceAddrRS;
const int picWidthInCtbs = sps->PicWidthInCtbsY;
const int chromashiftW = sps->get_chroma_shift_W(cIdx);
const int chromashiftH = sps->get_chroma_shift_H(cIdx);
const int ctbshiftW = sps->Log2CtbSizeY - chromashiftW;
const int ctbshiftH = sps->Log2CtbSizeY - chromashiftH;
for (int i=0;i<5;i++)
{
logtrace(LogSAO,"offset[%d] = %d\n", i, i==0 ? 0 : saoinfo->saoOffsetVal[cIdx][i-1]);
}
// actual size of CTB to be processed (can be smaller when partially outside of image)
const int ctbW = (xC+nSW>width) ? width -xC : nSW;
const int ctbH = (yC+nSH>height) ? height-yC : nSH;
const bool extendedTests = img->get_CTB_has_pcm_or_cu_transquant_bypass(xCtb,yCtb);
if (SaoTypeIdx==2) {
int hPos[2], vPos[2];
int vPosStride[2]; // vPos[] multiplied by image stride
int SaoEoClass = (saoinfo->SaoEoClass >> (2*cIdx)) & 0x3;
switch (SaoEoClass) {
case 0: hPos[0]=-1; hPos[1]= 1; vPos[0]= 0; vPos[1]=0; break;
case 1: hPos[0]= 0; hPos[1]= 0; vPos[0]=-1; vPos[1]=1; break;
case 2: hPos[0]=-1; hPos[1]= 1; vPos[0]=-1; vPos[1]=1; break;
case 3: hPos[0]= 1; hPos[1]=-1; vPos[0]=-1; vPos[1]=1; break;
}
vPosStride[0] = vPos[0] * in_stride;
vPosStride[1] = vPos[1] * in_stride;
/* Reorder sao_info.saoOffsetVal[] array, so that we can index it
directly with the sum of the two pixel-difference signs. */
int8_t saoOffsetVal[5]; // [2] unused
saoOffsetVal[0] = saoinfo->saoOffsetVal[cIdx][1-1];
saoOffsetVal[1] = saoinfo->saoOffsetVal[cIdx][2-1];
saoOffsetVal[2] = 0;
saoOffsetVal[3] = saoinfo->saoOffsetVal[cIdx][3-1];
saoOffsetVal[4] = saoinfo->saoOffsetVal[cIdx][4-1];
for (int j=0;j<ctbH;j++) {
const pixel_t* in_ptr = &in_img [xC+(yC+j)*in_stride];
/* */ pixel_t* out_ptr = &out_img[xC+(yC+j)*out_stride];
for (int i=0;i<ctbW;i++) {
int edgeIdx = -1;
logtrace(LogSAO, "pos %d,%d\n",xC+i,yC+j);
if ((extendedTests &&
(sps->pcm_loop_filter_disable_flag &&
img->get_pcm_flag((xC+i)<<chromashiftW,(yC+j)<<chromashiftH))) ||
img->get_cu_transquant_bypass((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) {
continue;
}
// do the expensive test for boundaries only at the boundaries
bool testBoundary = (i==0 || j==0 || i==ctbW-1 || j==ctbH-1);
if (testBoundary)
for (int k=0;k<2;k++) {
int xS = xC+i+hPos[k];
int yS = yC+j+vPos[k];
if (xS<0 || yS<0 || xS>=width || yS>=height) {
edgeIdx=0;
break;
}
// This part seems inefficient with all the get_SliceHeaderIndex() calls,
// but removing this part (because the input was known to have only a single
// slice anyway) reduced computation time only by 1.3%.
// TODO: however, this may still be a big part of SAO itself.
slice_segment_header* sliceHeader = img->get_SliceHeader(xS<<chromashiftW,
yS<<chromashiftH);
if (sliceHeader==NULL) { return; }
int sliceAddrRS = sliceHeader->SliceAddrRS;
if (sliceAddrRS < ctbSliceAddrRS &&
img->get_SliceHeader((xC+i)<<chromashiftW,
(yC+j)<<chromashiftH)->slice_loop_filter_across_slices_enabled_flag==0) {
edgeIdx=0;
break;
}
if (sliceAddrRS > ctbSliceAddrRS &&
img->get_SliceHeader(xS<<chromashiftW,
yS<<chromashiftH)->slice_loop_filter_across_slices_enabled_flag==0) {
edgeIdx=0;
break;
}
if (pps->loop_filter_across_tiles_enabled_flag==0 &&
pps->TileIdRS[(xS>>ctbshiftW) + (yS>>ctbshiftH)*picWidthInCtbs] !=
pps->TileIdRS[(xC>>ctbshiftW) + (yC>>ctbshiftH)*picWidthInCtbs]) {
edgeIdx=0;
break;
}
}
if (edgeIdx != 0) {
edgeIdx = ( Sign(in_ptr[i] - in_ptr[i+hPos[0]+vPosStride[0]]) +
Sign(in_ptr[i] - in_ptr[i+hPos[1]+vPosStride[1]]) );
if (1) { // edgeIdx != 0) { // seems to be faster without this check (zero in offset table)
int offset = saoOffsetVal[edgeIdx+2];
out_ptr[i] = Clip3(0,maxPixelValue,
in_ptr[i] + offset);
}
}
}
}
}
else {
int bandShift = bitDepth-5;
int saoLeftClass = saoinfo->sao_band_position[cIdx];
logtrace(LogSAO,"saoLeftClass: %d\n",saoLeftClass);
int bandTable[32];
memset(bandTable, 0, sizeof(int)*32);
for (int k=0;k<4;k++) {
bandTable[ (k+saoLeftClass)&31 ] = k+1;
}
/* If PCM or transquant_bypass is used in this CTB, we have to
run all checks (A).
Otherwise, we run a simplified version of the code (B).
NOTE: this whole part of SAO does not seem to be a significant part of the time spent
*/
if (extendedTests) {
// (A) full version with all checks
for (int j=0;j<ctbH;j++)
for (int i=0;i<ctbW;i++) {
if ((sps->pcm_loop_filter_disable_flag &&
img->get_pcm_flag((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) ||
img->get_cu_transquant_bypass((xC+i)<<chromashiftW,(yC+j)<<chromashiftH)) {
continue;
}
// Shifts are a strange thing. On x86, >>x actually computes >>(x%64).
// So we have to take care of large bandShifts.
int bandIdx;
if (bandShift >= 8) {
bandIdx = 0;
} else {
bandIdx = bandTable[ in_img[xC+i+(yC+j)*in_stride]>>bandShift ];
}
if (bandIdx>0) {
int offset = saoinfo->saoOffsetVal[cIdx][bandIdx-1];
logtrace(LogSAO,"%d %d (%d) offset %d %x -> %x\n",xC+i,yC+j,bandIdx,
offset,
in_img[xC+i+(yC+j)*in_stride],
in_img[xC+i+(yC+j)*in_stride]+offset);
out_img[xC+i+(yC+j)*out_stride] = Clip3(0,maxPixelValue,
in_img[xC+i+(yC+j)*in_stride] + offset);
}
}
}
else
{
// (B) simplified version (only works if no PCM and transquant_bypass is active)
for (int j=0;j<ctbH;j++)
for (int i=0;i<ctbW;i++) {
// see above
int bandIdx;
if (bandShift >= 8) {
bandIdx = 0;
} else {
bandIdx = bandTable[ in_img[xC+i+(yC+j)*in_stride]>>bandShift ];
}
if (bandIdx>0) {
int offset = saoinfo->saoOffsetVal[cIdx][bandIdx-1];
out_img[xC+i+(yC+j)*out_stride] = Clip3(0,maxPixelValue,
in_img[xC+i+(yC+j)*in_stride] + offset);
}
}
}
}
}
template <class pixel_t>
void apply_sao(de265_image* img, int xCtb,int yCtb,
const slice_segment_header* shdr, int cIdx, int nSW,int nSH,
const pixel_t* in_img, int in_stride,
/* */ pixel_t* out_img, int out_stride)
{
if (img->high_bit_depth(cIdx)) {
apply_sao_internal<uint16_t>(img,xCtb,yCtb, shdr,cIdx,nSW,nSH,
(uint16_t*)in_img, in_stride,
(uint16_t*)out_img,out_stride);
}
else {
apply_sao_internal<uint8_t>(img,xCtb,yCtb, shdr,cIdx,nSW,nSH,
in_img, in_stride,
out_img,out_stride);
}
}
void apply_sample_adaptive_offset(de265_image* img)
{
const seq_parameter_set& sps = img->get_sps();
if (sps.sample_adaptive_offset_enabled_flag==0) {
return;
}
de265_image inputCopy;
de265_error err = inputCopy.copy_image(img);
if (err != DE265_OK) {
img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
return;
}
for (int yCtb=0; yCtb<sps.PicHeightInCtbsY; yCtb++)
for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
{
const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,yCtb);
if (shdr->slice_sao_luma_flag) {
apply_sao(img, xCtb,yCtb, shdr, 0, 1<<sps.Log2CtbSizeY, 1<<sps.Log2CtbSizeY,
inputCopy.get_image_plane(0), inputCopy.get_image_stride(0),
img->get_image_plane(0), img->get_image_stride(0));
}
if (shdr->slice_sao_chroma_flag) {
int nSW = (1<<sps.Log2CtbSizeY) / sps.SubWidthC;
int nSH = (1<<sps.Log2CtbSizeY) / sps.SubHeightC;
apply_sao(img, xCtb,yCtb, shdr, 1, nSW,nSH,
inputCopy.get_image_plane(1), inputCopy.get_image_stride(1),
img->get_image_plane(1), img->get_image_stride(1));
apply_sao(img, xCtb,yCtb, shdr, 2, nSW,nSH,
inputCopy.get_image_plane(2), inputCopy.get_image_stride(2),
img->get_image_plane(2), img->get_image_stride(2));
}
}
}
void apply_sample_adaptive_offset_sequential(de265_image* img)
{
const seq_parameter_set& sps = img->get_sps();
if (sps.sample_adaptive_offset_enabled_flag==0) {
return;
}
int lumaImageSize = img->get_image_stride(0) * img->get_height(0) * img->get_bytes_per_pixel(0);
int chromaImageSize = img->get_image_stride(1) * img->get_height(1) * img->get_bytes_per_pixel(1);
uint8_t* inputCopy = new uint8_t[ libde265_max(lumaImageSize, chromaImageSize) ];
if (inputCopy == NULL) {
img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
return;
}
int nChannels = 3;
if (sps.ChromaArrayType == CHROMA_MONO) { nChannels=1; }
for (int cIdx=0;cIdx<nChannels;cIdx++) {
int stride = img->get_image_stride(cIdx);
int height = img->get_height(cIdx);
memcpy(inputCopy, img->get_image_plane(cIdx), stride * height * img->get_bytes_per_pixel(cIdx));
for (int yCtb=0; yCtb<sps.PicHeightInCtbsY; yCtb++)
for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
{
const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,yCtb);
if (shdr==NULL) { return; }
if (cIdx==0 && shdr->slice_sao_luma_flag) {
apply_sao(img, xCtb,yCtb, shdr, 0, 1<<sps.Log2CtbSizeY, 1<<sps.Log2CtbSizeY,
inputCopy, stride,
img->get_image_plane(0), img->get_image_stride(0));
}
if (cIdx!=0 && shdr->slice_sao_chroma_flag) {
int nSW = (1<<sps.Log2CtbSizeY) / sps.SubWidthC;
int nSH = (1<<sps.Log2CtbSizeY) / sps.SubHeightC;
apply_sao(img, xCtb,yCtb, shdr, cIdx, nSW,nSH,
inputCopy, stride,
img->get_image_plane(cIdx), img->get_image_stride(cIdx));
}
}
}
delete[] inputCopy;
}
class thread_task_sao : public thread_task
{
public:
int ctb_y;
de265_image* img; /* this is where we get the SPS from
(either inputImg or outputImg can be a dummy image)
*/
de265_image* inputImg;
de265_image* outputImg;
int inputProgress;
virtual void work();
virtual std::string name() const {
char buf[100];
sprintf(buf,"sao-%d",ctb_y);
return buf;
}
};
void thread_task_sao::work()
{
state = Running;
img->thread_run(this);
const seq_parameter_set& sps = img->get_sps();
const int rightCtb = sps.PicWidthInCtbsY-1;
const int ctbSize = (1<<sps.Log2CtbSizeY);
// wait until also the CTB-rows below and above are ready
img->wait_for_progress(this, rightCtb,ctb_y, inputProgress);
if (ctb_y>0) {
img->wait_for_progress(this, rightCtb,ctb_y-1, inputProgress);
}
if (ctb_y+1<sps.PicHeightInCtbsY) {
img->wait_for_progress(this, rightCtb,ctb_y+1, inputProgress);
}
// copy input image to output for this CTB-row
outputImg->copy_lines_from(inputImg, ctb_y * ctbSize, (ctb_y+1) * ctbSize);
// process SAO in the CTB-row
for (int xCtb=0; xCtb<sps.PicWidthInCtbsY; xCtb++)
{
const slice_segment_header* shdr = img->get_SliceHeaderCtb(xCtb,ctb_y);
if (shdr==NULL) {
break;
}
if (shdr->slice_sao_luma_flag) {
apply_sao(img, xCtb,ctb_y, shdr, 0, ctbSize, ctbSize,
inputImg ->get_image_plane(0), inputImg ->get_image_stride(0),
outputImg->get_image_plane(0), outputImg->get_image_stride(0));
}
if (shdr->slice_sao_chroma_flag) {
int nSW = ctbSize / sps.SubWidthC;
int nSH = ctbSize / sps.SubHeightC;
apply_sao(img, xCtb,ctb_y, shdr, 1, nSW,nSH,
inputImg ->get_image_plane(1), inputImg ->get_image_stride(1),
outputImg->get_image_plane(1), outputImg->get_image_stride(1));
apply_sao(img, xCtb,ctb_y, shdr, 2, nSW,nSH,
inputImg ->get_image_plane(2), inputImg ->get_image_stride(2),
outputImg->get_image_plane(2), outputImg->get_image_stride(2));
}
}
// mark SAO progress
for (int x=0;x<=rightCtb;x++) {
const int CtbWidth = sps.PicWidthInCtbsY;
img->ctb_progress[x+ctb_y*CtbWidth].set_progress(CTB_PROGRESS_SAO);
}
state = Finished;
img->thread_finishes(this);
}
bool add_sao_tasks(image_unit* imgunit, int saoInputProgress)
{
de265_image* img = imgunit->img;
const seq_parameter_set& sps = img->get_sps();
if (sps.sample_adaptive_offset_enabled_flag==0) {
return false;
}
decoder_context* ctx = img->decctx;
de265_error err = imgunit->sao_output.alloc_image(img->get_width(), img->get_height(),
img->get_chroma_format(),
img->get_shared_sps(),
false,
img->decctx, //img->encctx,
img->pts, img->user_data, true);
if (err != DE265_OK) {
img->decctx->add_warning(DE265_WARNING_CANNOT_APPLY_SAO_OUT_OF_MEMORY,false);
return false;
}
int nRows = sps.PicHeightInCtbsY;
int n=0;
img->thread_start(nRows);
for (int y=0;y<nRows;y++)
{
thread_task_sao* task = new thread_task_sao;
task->inputImg = img;
task->outputImg = &imgunit->sao_output;
task->img = img;
task->ctb_y = y;
task->inputProgress = saoInputProgress;
imgunit->tasks.push_back(task);
add_task(&ctx->thread_pool_, task);
n++;
}
/* Currently need barrier here because when are finished, we have to swap the pixel
data back into the main image. */
img->wait_for_completion();
img->exchange_pixel_data_with(imgunit->sao_output);
return true;
}